解:(Ⅰ)設(shè)雙曲線C2的方程為.則 查看更多

 

題目列表(包括答案和解析)

設(shè)雙曲線C1的方程為
x2
a2
-
y2
b2
=1
(a>0,b>0),A、B為其左、右兩個頂點,P是雙曲線C1上的任意一點,作QB⊥PB,QA⊥PA,垂足分別為A、B,AQ與BQ交于點Q.
(1)求Q點的軌跡C2方程;
(2)設(shè)C1、C2的離心率分別為e1、e2,當e1
2
時,求e2的取值范圍.

查看答案和解析>>

設(shè)雙曲線C1的方程為(a>0,b>0),A、B為其左、右兩個頂點,P是雙曲線C1上的任意一點,作QB⊥PB,QA⊥PA,垂足分別為A、B,AQ與BQ交于點Q.
(1)求Q點的軌跡C2方程;
(2)設(shè)C1、C2的離心率分別為e1、e2,當時,求e2的取值范圍.

查看答案和解析>>

設(shè)雙曲線C1的方程為數(shù)學公式(a>0,b>0),A、B為其左、右兩個頂點,P是雙曲線C1上的任意一點,作QB⊥PB,QA⊥PA,垂足分別為A、B,AQ與BQ交于點Q.
(1)求Q點的軌跡C2方程;
(2)設(shè)C1、C2的離心率分別為e1、e2,當數(shù)學公式時,求e2的取值范圍.

查看答案和解析>>

已知兩點F1(-2,0),F(xiàn)2(2,0),曲線C1上的動點P滿足|PF1|+|PF2|=
2
|F1F2|

(1)求曲線C1的方程;
(2)設(shè)曲線C2的方程為|x|+|y|=m(m>0),當C1和C2有四個不同的交點時,求實數(shù)m的取值范圍.

查看答案和解析>>

橢圓C1
x2
4
+
y2
3
=1
,雙曲線C2的方程為
x2
a2
-
y2
b2
=1(a>0,b>0)

(1)求C1的焦點坐標、離心率及準線方程;
(2)若C2的離心率與C1的離心率互為倒數(shù),且C2的虛半軸長等于C1焦點到相應(yīng)準線的距離,求C2的方程.

查看答案和解析>>


同步練習冊答案