∴軌跡E的方程為---------------------5分 查看更多

 

題目列表(包括答案和解析)

已知圓的方程x2+y2=25,點A為該圓上的動點,AB與x軸垂直,B為垂足,點P分的比λ=

⑴試求點P的軌跡E的方程; w.w.w.k.s.5.u.c.o.m      

⑵寫出軌跡E的焦點坐標和準線方程.

查看答案和解析>>

已知圓C1的方程為x2+y2+4x-5=0,圓C2的方程為x2+y2-4x+3=0,動圓C與圓C1、C2相外切.
(I)求動圓C圓心軌跡E的方程;
(II)若直線l過點(2,0)且與軌跡E交于P、Q兩點.
①設點M(m,0),問:是否存在實數(shù)m,使得直線l繞點(2,0)無論怎樣轉(zhuǎn)動,都有
MP
MQ
=0成立?若存在,求出實數(shù)m的值;若不存在,請說明理由;
②過P、Q作直線x=
1
2
的垂線PA、QB,垂足分別為A、B,記λ=
|
PA
|+|
QB
|
|
AB
|
,求λ,的取值范圍.

查看答案和解析>>

已知圓C1的方程為x2+y2+4x-5=0,圓C2的方程為x2+y2-4x+3=0,動圓C與圓C1、C2相外切.
(I)求動圓C圓心軌跡E的方程;
(II)若直線l過點(2,0)且與軌跡E交于P、Q兩點.
①設點M(m,0),問:是否存在實數(shù)m,使得直線l繞點(2,0)無論怎樣轉(zhuǎn)動,都有
數(shù)學公式數(shù)學公式=0成立?若存在,求出實數(shù)m的值;若不存在,請說明理由;
②過P、Q作直線x=數(shù)學公式的垂線PA、QB,垂足分別為A、B,記λ=數(shù)學公式,求λ,的取值范圍.

查看答案和解析>>

已知圓C1的方程為x2+y2+4x-5=0,圓C2的方程為x2+y2-4x+3=0,動圓C與圓C1、C2相外切.
(I)求動圓C圓心軌跡E的方程;
(II)若直線l過點(2,0)且與軌跡E交于P、Q兩點.
①設點M(m,0),問:是否存在實數(shù)m,使得直線l繞點(2,0)無論怎樣轉(zhuǎn)動,都有
=0成立?若存在,求出實數(shù)m的值;若不存在,請說明理由;
②過P、Q作直線x=的垂線PA、QB,垂足分別為A、B,記λ=,求λ,的取值范圍.

查看答案和解析>>

已知雙曲線S的兩個焦點F1、F2在x軸上,它的兩條漸近線分別為l1、l2,y=x是其中的一條漸近線的方程,兩條直線X=±是雙曲線S的準線.
(I)設A、B分別為l1、l2上的動點,且2||=5,求線段AB的中點M的軌跡方程:
(II)已知O是原點,經(jīng)過點N(0,1)是否存在直線l,使l與雙曲線S交于P,E且△POE是以PE為斜邊的直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案