當(dāng)且僅當(dāng).即時(shí).數(shù)列為等差數(shù)列.解法二: 查看更多

 

題目列表(包括答案和解析)

(本小題滿分16分)從數(shù)列中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱之為數(shù)列的一個(gè)子數(shù)列.

設(shè)數(shù)列是一個(gè)首項(xiàng)為、公差為的無(wú)窮等差數(shù)列(即項(xiàng)數(shù)有無(wú)限項(xiàng)).

(1)若,,成等比數(shù)列,求其公比

(2)若,從數(shù)列中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)該數(shù)列是否為的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.

(3)若,從數(shù)列中取出第1項(xiàng)、第項(xiàng)(設(shè))作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)當(dāng)且僅當(dāng)為何值時(shí),該數(shù)列為的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本小題滿分16分)從數(shù)列中取出部分項(xiàng),并將它們按原來(lái)的順序組成一個(gè)數(shù)列,稱之為數(shù)列的一個(gè)子數(shù)列.

設(shè)數(shù)列是一個(gè)首項(xiàng)為、公差為的無(wú)窮等差數(shù)列(即項(xiàng)數(shù)有無(wú)限項(xiàng)).

(1)若,,成等比數(shù)列,求其公比

(2)若,從數(shù)列中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)該數(shù)列是否為的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.

(3)若,從數(shù)列中取出第1項(xiàng)、第項(xiàng)(設(shè))作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問(wèn)當(dāng)且僅當(dāng)為何值時(shí),該數(shù)列為的無(wú)窮等比子數(shù)列,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

【解析】第一問(wèn)利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

,

第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問(wèn),

     若成等比數(shù)列,則

即.

,可得,即

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

,

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則

即.

,可得,即

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

查看答案和解析>>


同步練習(xí)冊(cè)答案