.所以當n=k+1時.結(jié)論也成立. 查看更多

 

題目列表(包括答案和解析)

某個與正整數(shù)有關的命題,若當n=k(k∈N*)時,該命題成立,則可推出當n=k+1時,該命題也成立,現(xiàn)已知當n=5時,該命題不成立,那么可能

A.當n=6時,該命題成立                  B.當n=4時,該命題不成立

C.當n=6時,該命題不成立               D.當n=4時,該命題成立

查看答案和解析>>

用數(shù)學歸納法證明“
n2+n
<n+1 (n∈N*)”.第二步證n=k+1時(n=1已驗證,n=k已假設成立),這樣證明:
(k+1)2+(k+1)
=
k2+3k+2
k2+4k+4
=(k+1)+1,所以當n=k+1時,命題正確.此種證法(  )

查看答案和解析>>

對于不等式≤n+1(n∈N+),某學生的證明過程如下:

(1)當n=1時,≤1+1,不等式成立.

(2)假設n=k(k∈N+)時,不等式成立,即<k+1,則n=k+1時,

=(k+1)+1.

所以當n=k+1時,不等式成立.

上述證法(    )

A.過程全部正確

B.n=1驗得不正確

C.歸納假設不正確

D.從n=k到n=k+1的推理不正確

查看答案和解析>>

某同學回答“用數(shù)學歸納法證明<n+1(n∈N)”的過程如下:

證明:(1)當n=1時,顯然命題是正確的;(2)假設n=k時有<k+1,那么當n=k+1時,=(k+1)+1,所以當n=k+1時命題是正確的,由(1)(2)可知對于n∈N,命題都是正確的.以上證法是錯誤的,錯誤在于(    )

A.當n=1時,驗證過程不具體

B.歸納假設的寫法不正確

C.從k到k+1的推理不嚴密

D.從k到k+1的推理過程沒有使用歸納假設

查看答案和解析>>

數(shù)列,滿足

(1)求,并猜想通項公式。

(2)用數(shù)學歸納法證明(1)中的猜想。

【解析】本試題主要考查了數(shù)列的通項公式求解,并用數(shù)學歸納法加以證明。第一問利用遞推關系式得到,,,并猜想通項公式

第二問中,用數(shù)學歸納法證明(1)中的猜想。

①對n=1,等式成立。

②假設n=k時,成立,

那么當n=k+1時,

,所以當n=k+1時結(jié)論成立可證。

數(shù)列,滿足

(1),,并猜想通項公。  …4分

(2)用數(shù)學歸納法證明(1)中的猜想。①對n=1,等式成立。  …5分

②假設n=k時,成立,

那么當n=k+1時,

,             ……9分

所以

所以當n=k+1時結(jié)論成立                     ……11分

由①②知,猜想對一切自然數(shù)n均成立

 

查看答案和解析>>


同步練習冊答案