①函數(shù)在區(qū)間()上是增函數(shù), 查看更多

 

題目列表(包括答案和解析)

在區(qū)間上不是增函數(shù)的是            (    )

    A.;   B.;      C.;    D..

 

查看答案和解析>>

在區(qū)間上不是增函數(shù)的是           (   )

A.;B.;C.D..

查看答案和解析>>

在區(qū)間上不是增函數(shù)的是           (   )
A.;B.C.;D..

查看答案和解析>>

函數(shù)f(x)=3sin(2x-
π
3
)
的圖象為G
①圖象G關于直線x=
11
12
π
對稱;
②函數(shù)f(x)在區(qū)間(-
π
12
,
12
)
內(nèi)是增函數(shù);
③由y=3sin2x的圖象向右平移
π
3
個單位長度可以得到圖象G.
以上三個論斷中,所有正確論斷的序號是( 。
A、①②B、①③C、②③D、②

查看答案和解析>>

函數(shù)f(x)的定義域D={x|x≠0},且滿足對于任意x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)與f(-1)的值;
(2)判斷函數(shù)的奇偶性并證明;
(3)若x>1時,f(x)>0,求證f(x)在區(qū)間(0,+∞)上是增函數(shù);
(4)在(3)的條件下,若f(4)=1,求不等式f(3x+1)≤2的解集.

查看答案和解析>>

 

一、選擇題

CBACD  ADBAC  DB

二、填空題

13.    14.    15.    16.①③④

三、解答題

17.解:(1)由題設

……………………2分

…………………………3分

…………………………5分

…………………………6分

(2)設圖象向左平移m個單位,得到函數(shù)的圖象.

,…………………………8分

對稱,

…………………………10分

…………………………12分

18.(本小題滿分12分)

解:(1)設等差數(shù)列的公差為d,等比數(shù)列的公比為q,

由題設知

……………………3分

,

…………………………6分

(2)…………………………7分

  ②……………………9分

①―②得

…………………………12分

19.(本小題滿分12分)

∵EF為△A­BC1的中位線,

∴EF//BC1,……………………3分

又∵EF平面AB1F,BC1平面AB1F

∴BC1//平面AB1F,………………6分

(2)在正三棱柱中,

B2F⊥A1C1,

而A1C1B1⊥面ACC1A1

∵B1F⊥平面AA1C1C,A1M平面AA1C1C,

∴B1F⊥A1M,

在△AA1F中,

在△A1MC1中,…………………………9分

∴∠AFA1=∠A1MC1,

又∵∠A1MC1+∠MA1C1=90°,

∴∠AFA1+∠MA1C1=90°,

∴A1M⊥AF,…………………………11分

又∵,

∴A1M⊥平面AFB1.…………………………12分

20.(本小題滿分12分)

解:(1)先后兩次拋擲一枚骰子,將得到的點數(shù)分別為a,b,

則事件總數(shù)為6×6=36…………2分

<label id="7xba7"><th id="7xba7"><track id="7xba7"></track></th></label>
<legend id="7xba7"><ruby id="7xba7"><optgroup id="7xba7"></optgroup></ruby></legend>

    當a=1時,b=1,2,3,4

    a=2時,b=1,2,3

    a=3時,b=1,2

    a=4,b=1

    共有(1,1)(1,2)……

    (4,1)10種情況…………6分

    …………7分

    (2)相切的充要條件是

    滿足條件的情況只有兩種情況…………10分

    ……12分

    21.(本小題滿分12分)

    解:(1)設

    ,

    …………………………3分

    ,這就是軌跡E的方程.……………………4分

    (2)當時,軌跡為橢圓,方程為①…………5分

    設直線PD的方程為

    代入①,并整理,得

       ②

    由題意,必有,故方程②有兩上不等實根.

    設點

    由②知,………………7分

    直線QF的方程為

    時,令,

    代入

    整理得,

    再將代入,

    計算,得x=1,即直線QF過定點(1,0)

    當k=0時,(1,0)點……………………12分

    22.(本小題滿分14分)

    解:(1)當a=0,b=3時,

    ,解得

    x變化時,變化狀態(tài)如下表:

    0

    (0,2)

    2

    +

    0

    -

    0

    +

    0

    -4

    從上表可知=

    ……………………5分

    (2)當a=0時,≥在恒成立,

    在在恒成立,……………………………7分

    d則

    x>1時,>0,

    是增函數(shù),

    b≤1.…………………………………………………………9分

    (Ⅲ)∵ ,∴?=0,

    ,∴

    由題知,的兩根,

    >0………………………11分

    則①式可化為

    ………………………………………………12分

    當且僅當,即時取“=”.

    的取值范圍是 .……………………………………14分

     

     

     


    同步練習冊答案