過(guò)點(diǎn)A且與AB垂直的直線方程為. 查看更多

 

題目列表(包括答案和解析)

12、已知拋物線方程為y2=2px(p>0),過(guò)該拋物線焦點(diǎn)F且不與x軸垂直的直線AB交拋物線于A,B兩點(diǎn),過(guò)點(diǎn)A,點(diǎn)B分別作AM,BN垂直于拋物線的準(zhǔn)線,分別交準(zhǔn)線于M,N兩點(diǎn),那么∠MFN必是( 。

查看答案和解析>>

已知直線l1:x-y=0,l2:x+y=0,點(diǎn)P是線性約束條件
x-y≥0
x+y≥0
所表示區(qū)域內(nèi)一動(dòng)點(diǎn),PM⊥l1,PN⊥l2,垂足分別為M、N,且S△OMN=
1
2
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)是否存在過(guò)點(diǎn)(2,0)的直線l與(Ⅰ)中軌跡交于點(diǎn)A、B,線段AB的垂直平分線交y軸于Q點(diǎn),且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

已知直線,點(diǎn)P是線性約束條件所表示區(qū)域內(nèi)一動(dòng)點(diǎn),,垂足分別為M、N,且(O為坐標(biāo)原點(diǎn))

   (Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;

   (Ⅱ)是否存在過(guò)點(diǎn)(2,0)的直線與(Ⅰ)中軌跡交于點(diǎn)A、B,線段AB的垂直平分線交 軸于Q點(diǎn),且使得是等邊三角形。若存在,求出直線的方程,若不存在,說(shuō)明理由。

 

 

查看答案和解析>>

已知直線l1:x-y=0,l2:x+y=0,點(diǎn)P是線性約束條件數(shù)學(xué)公式所表示區(qū)域內(nèi)一動(dòng)點(diǎn),PM⊥l1,PN⊥l2,垂足分別為M、N,且數(shù)學(xué)公式(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)是否存在過(guò)點(diǎn)(2,0)的直線l與(Ⅰ)中軌跡交于點(diǎn)A、B,線段AB的垂直平分線交y軸于Q點(diǎn),且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

已知直線l1:x-y=0,l2:x+y=0,點(diǎn)P是線性約束條件
x-y≥0
x+y≥0
所表示區(qū)域內(nèi)一動(dòng)點(diǎn),PM⊥l1,PN⊥l2,垂足分別為M、N,且S△OMN=
1
2
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)是否存在過(guò)點(diǎn)(2,0)的直線l與(Ⅰ)中軌跡交于點(diǎn)A、B,線段AB的垂直平分線交y軸于Q點(diǎn),且使得△ABQ是等邊三角形.若存在,求出直線l的方程,若不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案