分析:本題考查復(fù)數(shù)的概念.共軛復(fù)數(shù)的概念.復(fù)數(shù)的除法運(yùn)算等基礎(chǔ)知識(shí).考查方程.分類討論等數(shù)學(xué)思想.考查運(yùn)算能力.解題的關(guān)鍵是利用方程的思想.求出復(fù)數(shù). 查看更多

 

題目列表(包括答案和解析)

A.

【命題意圖】本題考查復(fù)數(shù)的概念及運(yùn)算,容易題.

查看答案和解析>>

假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)y(萬(wàn)元)有如下統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由資料知,y對(duì)x呈線性相關(guān)關(guān)系.試求:

(1)線性回歸方程;

(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?思路分析:本題考查線性回歸方程的求法和利用線性回歸方程求兩變量間的關(guān)系.

解:(1)

i

1

2

3

4

5

xi

2

3

4

5

6

yi

2.2

3.8

5.5

6.5

7.0

xiyi

4.4

11.4

22.0

32.5

42.0

b==1.23,

a=-b=5-1.23×4=0.08.

所以,回歸直線方程為=1.23x+0.08.

(2)當(dāng)x=10時(shí),=1.23×10+0.08=12.38(萬(wàn)元),

即估計(jì)使用10年時(shí)維修費(fèi)約為12.38萬(wàn)元.

查看答案和解析>>

高考資源網(wǎng)( www.ks5u.com),中國(guó)最大的高考網(wǎng)站,您身邊的高考專家。,故選C. 

答案:C

【命題立意】:本題考查復(fù)數(shù)的除法運(yùn)算,分子、分母需要同乘以分母的共軛復(fù)數(shù),把分母變?yōu)閷?shí)數(shù),將除法轉(zhuǎn)變?yōu)槌朔ㄟM(jìn)行運(yùn)算.

查看答案和解析>>

一批燈泡的使用時(shí)間ξ(單位:小時(shí))服從正態(tài)分布N(10 000,4002).

(1)求這批燈泡中“使用時(shí)間超過(guò)10 800小時(shí)”的燈泡的概率;

(2)現(xiàn)從這批燈泡中隨機(jī)抽取100個(gè),求這100個(gè)燈泡中“使用時(shí)間超過(guò)10 800小時(shí)”的燈泡個(gè)數(shù)的期望.(下列數(shù)據(jù)供計(jì)算時(shí)選用:Φ(0.5)=0.691 5,Φ(1)=0.841 3,Φ(2)=0.977 2)

分析:本題考查正態(tài)分布與標(biāo)準(zhǔn)正態(tài)分布的轉(zhuǎn)化及二項(xiàng)分布的數(shù)學(xué)期望.

查看答案和解析>>

已知函數(shù)f(x)=-x3+3x2+9xa.

(1)求f(x)的單調(diào)遞減區(qū)間;

(2)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.

思路 本題考查多項(xiàng)式的導(dǎo)數(shù)公式及運(yùn)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間和函數(shù)的最值,題目中需注意應(yīng)先比較f(2)和f(-2)的大小,然后判定哪個(gè)是最大值從而求出a.

查看答案和解析>>


同步練習(xí)冊(cè)答案