設(shè)與橢圓C交點為 查看更多

 

題目列表(包括答案和解析)

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,雙曲線
x2
a2
-
y2
b2
=1
兩漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1,又設(shè)l與l2交于點P,l與C兩交點自上而下依次為A、B;
(1)當(dāng)l1與l2夾角為
π
3
,雙曲線焦距為4時,求橢圓C的方程及其離心率;
(2)若
FA
AP
,求λ的最小值.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右頂點的坐標分別為A(-2,0),B(2,0),離心率e=
1
2

(Ⅰ)求橢圓C的方程:
(Ⅱ)設(shè)橢圓的兩焦點分別為F1,F(xiàn)2,點P是其上的動點,
(1)當(dāng)△PF1F2內(nèi)切圓的面積最大時,求內(nèi)切圓圓心的坐標;
(2)若直線l:y=k(x-1)(k≠0)與橢圓交于M、N兩點,證明直線AM與直線BN的交點在直線x=4上.

查看答案和解析>>

橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),A1、A2、B1、B2分別為橢圓C的長軸與短軸的端點.
(1)設(shè)點M(x0,0),若當(dāng)且僅當(dāng)橢圓C上的點P在橢圓長軸頂點A1、A2處時,|PM|取得最大值與最小值,求x0的取值范圍;
(2)若橢圓C上的點P到焦點距離的最大值為3,最小值為l,且與直線l:y=kx+m相交于A,B兩點(A,B不是橢圓的左右頂點),并滿足AA2⊥BA2.試研究:直線l是否過定點?若過定點,請求出定點坐標,若不過定點,請說明理由.

查看答案和解析>>

橢圓C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率為1的直L與橢C交于A(x1,y1)B(x2,y2)兩點.
(Ⅰ)若橢圓的離心率e=
3
2
,直線l過點M(b,0),且
OA
OB
=-
12
5
,求橢圓C的方程;
(Ⅱ)直線l過橢圓的右焦點F,設(shè)向量
OP
=λ(
OA
+
OB
)(λ>0),若點P在橢C上,λ的取值范圍.

查看答案和解析>>

設(shè)是橢圓C:的左、右焦點,過的直線與橢圓C相交于A、B兩點,直線的傾斜角為,到直線的距離為。

(1)求橢圓C的焦距。

(2)如果,求橢圓C的方程。

 

查看答案和解析>>


同步練習(xí)冊答案