[解](1)解:依題意雙曲線(xiàn)方程可化為則 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),其中

(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;

(2)若對(duì)任意的為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.

【解析】(1)根據(jù)建立關(guān)于a的方程求a即可.

(2)本題要分別求出f(x)在[1,e]上的最小值,g(x)在[1,e]上的最大值,然后

,解關(guān)于a的不等式即可.

 

查看答案和解析>>

已知橢圓C: 的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線(xiàn)與橢圓C交于不同的兩點(diǎn)M,N。

(1)   求橢圓C的方程

(2)   當(dāng)的面積為時(shí),求k的值。

【解析】(1)∵ ∴

(2)

,

化簡(jiǎn)得:,解得

 

查看答案和解析>>

已知曲線(xiàn)C:(m∈R)

(1)   若曲線(xiàn)C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;

(2)     設(shè)m=4,曲線(xiàn)c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線(xiàn)y=kx+4與曲線(xiàn)c交于不同的兩點(diǎn)M、N,直線(xiàn)y=1與直線(xiàn)BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線(xiàn)。

【解析】(1)曲線(xiàn)C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

(2)當(dāng)m=4時(shí),曲線(xiàn)C的方程為,點(diǎn)A,B的坐標(biāo)分別為,

,得

因?yàn)橹本(xiàn)與曲線(xiàn)C交于不同的兩點(diǎn),所以

設(shè)點(diǎn)M,N的坐標(biāo)分別為,則

直線(xiàn)BM的方程為,點(diǎn)G的坐標(biāo)為

因?yàn)橹本(xiàn)AN和直線(xiàn)AG的斜率分別為

所以

,故A,G,N三點(diǎn)共線(xiàn)。

 

查看答案和解析>>

已知正方體ABCD-A1B1C1D1

  O是底面ABCD對(duì)角線(xiàn)的交點(diǎn).

(1)求證:A1C⊥平面AB1D1;

(2)求.

【解析】(1)證明線(xiàn)面垂直,需要證明直線(xiàn)垂直這個(gè)平面內(nèi)的兩條相交直線(xiàn),本題只需證:即可.

(2)可以利用向量法,也可以根據(jù)平面A1ACC1與平面AB1D1垂直,可知取B1D1的中點(diǎn)E,則就是直線(xiàn)AC與平面AB1D1所成的角.然后解三角形即可.

 

查看答案和解析>>

已知是等差數(shù)列,其前n項(xiàng)和為Sn是等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

,

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時(shí),,,故等式成立.

②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

   

   

,因此n=k+1時(shí)等式也成立

由①和②,可知對(duì)任意,成立.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案