EM=--------------------------11分故三棱錐C-DEF的體積為 查看更多

 

題目列表(包括答案和解析)

)設點C為曲線y(x>0)上任一點,以點C為圓心的圓與x軸交于點EA,與y軸交于點EB.

(1)證明:多邊形EACB的面積是定值,并求這個定值;

(2)設直線y=-2x+4與圓C交于點M,N,若|EM|=|EN|,求圓C的方程.

 

查看答案和解析>>

(本小題滿分12分)

如圖,在四棱錐P-ABCD中,底面為正文形,PA平面ABCD,且PA=AD,E為棱PC上的一點,PD平面ABE

(I)求證:E為PC的中點

(II)若N為CD中點,M為AB上的動點,當直線MN與平面ABE所成的角最大時,求二面角C-EM—N的大小

 

 

查看答案和解析>>

)如圖,AC 是圓 O 的直徑,點 B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點 M,EA⊥平面ABC,F(xiàn)C//EA,AC=4,EA=3,F(xiàn)C=1.

(I)證明:EM⊥BF;

(II)求平面 BEF 與平面ABC 所成銳二面角的余弦值.

 

查看答案和解析>>

在如圖所示的幾何體中.EA⊥平面ABC,

DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M是AB的中點.

(Ⅰ)求證:CM⊥EM ;

(Ⅱ)求多面體ABCDE的體積

(Ⅲ)求直線DE與平面EMC所成角的正切值.  

查看答案和解析>>

(本題滿分14分)如圖,AC 是圓 O 的直徑,點 B 在圓 O 上,∠BAC=30°,BM⊥AC交 AC 于點 M,EA⊥平面ABC,F(xiàn)C//EA,AC=4,EA=3,F(xiàn)C=1

(I)證明:EM⊥BF;

(II)求平面 BEF 與平面ABC 所成的二面角的余弦值

 

查看答案和解析>>


同步練習冊答案