如右圖.在半徑為R的圓桌的正中央上空掛一盞電燈.桌子邊緣一點處的照度和燈光射到桌子邊緣的光線與桌面的夾角θ的正弦成正比.角和這一點到光源的距離 r的平方成反比.即I=k?.其中 k是一個和燈光強度有關的常數.那么怎樣選擇電燈懸掛的高度h.才能使桌子邊緣處最亮? 查看更多

 

題目列表(包括答案和解析)

如右圖,在半徑為R的圓桌的正中央上空掛一盞電燈,桌子邊緣一點處的照度和燈光射到桌子邊緣的光線與桌面的夾角θ的正弦成正比,角和這一點到光源的距離 r的平方成反比,即I=k·,其中 k是一個和燈光強度有關的常數,那么怎樣選擇電燈懸掛的高度h,才能使桌子邊緣處最亮?

查看答案和解析>>

如右圖,在半徑為R的圓桌的正中央上空掛一盞電燈,桌子邊緣一點處的照度和燈光射到桌子邊緣的光線與桌面的夾角θ的正弦成正比,角和這一點到光源的距離r的平方成反比,即I=k·,其中k是一個和燈光強度有關的常數,那么怎樣選擇電燈懸掛的高度h,才能使桌子邊緣處最亮?

查看答案和解析>>

難點磁場

解法一:由題設條件知B=60°,A+C=120°.

α=6ec8aac122bd4f6e,則AC=2α,可得A=60°+α,C=60°-α

6ec8aac122bd4f6e

依題設條件有6ec8aac122bd4f6e

6ec8aac122bd4f6e

整理得46ec8aac122bd4f6ecos2α+2cosα-36ec8aac122bd4f6e=0(M)

(2cosα6ec8aac122bd4f6e)(26ec8aac122bd4f6ecosα+3)=0,∵26ec8aac122bd4f6ecosα+3≠0,

∴2cosα6ec8aac122bd4f6e=0.從而得cos6ec8aac122bd4f6e.

解法二:由題設條件知B=60°,A+C=120°

6ec8aac122bd4f6e                                                              ①,把①式化為cosA+cosC=-26ec8aac122bd4f6ecosAcosC                                                              ②,

利用和差化積及積化和差公式,②式可化為

6ec8aac122bd4f6e                                          ③, 

將cos6ec8aac122bd4f6e=cos60°=6ec8aac122bd4f6e,cos(A+C)=-6ec8aac122bd4f6e代入③式得:

6ec8aac122bd4f6e                                                                             ④

將cos(AC)=2cos2(6ec8aac122bd4f6e)-1代入 ④:46ec8aac122bd4f6ecos2(6ec8aac122bd4f6e)+2cos6ec8aac122bd4f6e-36ec8aac122bd4f6e=0,(*),6ec8aac122bd4f6e

殲滅難點訓練

一、1.解析:其中(3)(4)正確.

答案: B

二、2.解析:∵A+B+C=π,A+C=2B

6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

3.解析:∵A為最小角∴2A+C=A+A+CA+B+C=180°.

∵cos(2A+C)=-6ec8aac122bd4f6e,∴sin(2A+C)=6ec8aac122bd4f6e.

C為最大角,∴B為銳角,又sinB=6ec8aac122bd4f6e.故cosB=6ec8aac122bd4f6e.

即sin(A+C)=6ec8aac122bd4f6e,cos(A+C)=-6ec8aac122bd4f6e.

∵cos(B+C)=-cosA=-cos[(2A+C)-(A+C)]=-6ec8aac122bd4f6e,

∴cos2(B+C)=2cos2(B+C)-1=6ec8aac122bd4f6e.

答案:6ec8aac122bd4f6e

三、4.解:如圖:連結BD,則有四邊形ABCD的面積:

6ec8aac122bd4f6e

S=SABD+SCDB=6ec8aac122bd4f6e?AB?ADsinA+6ec8aac122bd4f6e?BC?CD?sinC

A+C=180°,∴sinA=sinC

S=6ec8aac122bd4f6e(AB?AD+BC?CD)sinA=6ec8aac122bd4f6e(2×4+6×4)sinA=16sinA

由余弦定理,在△ABD中,BD2=AB2+AD2-2AB?AD?cosA=20-16cosA

在△CDB中,BD2=CB2+CD2-2CB?CD?cosC=52-48cosC

∴20-16cosA=52-48cosC,∵cosC=-cosA,

∴64cosA=-32,cosA=-6ec8aac122bd4f6e,又0°<A<180°,∴A=120°故S=16sin120°=86ec8aac122bd4f6e.

5.解:R=rcosθ,由此得:6ec8aac122bd4f6e,

6ec8aac122bd4f6e

6ec8aac122bd4f6e

7.解:由a、b3c成等比數列,得:b2=3ac

∴sin2B=3sinC?sinA=3(-6ec8aac122bd4f6e)[cos(A+C)-cos(AC)]

B=π-(A+C).∴sin2(A+C)=-6ec8aac122bd4f6e[cos(A+C)-cos6ec8aac122bd4f6e

即1-cos2(A+C)=-6ec8aac122bd4f6ecos(A+C),解得cos(A+C)=-6ec8aac122bd4f6e.

∵0<A+Cπ,∴A+C=6ec8aac122bd4f6eπ.又AC=6ec8aac122bd4f6eA=6ec8aac122bd4f6eπB=6ec8aac122bd4f6e,C=6ec8aac122bd4f6e.

8.解:按題意,設折疊后A點落在邊BC上改稱P點,顯然A、P兩點關于折線DE對稱,又設∠BAP=θ,∴∠DPA=θ,∠BDP=2θ,再設AB=a,AD=x,∴DP=x.在△ABC中,

APB=180°-∠ABP-∠BAP=120°-θ,?

由正弦定理知:6ec8aac122bd4f6e.∴BP=6ec8aac122bd4f6e

在△PBD中,6ec8aac122bd4f6e,

6ec8aac122bd4f6e 

∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,∴當60°+2θ=90°,即θ=15°時,

sin(60°+2θ)=1,此時x取得最小值6ec8aac122bd4f6ea,即AD最小,∴ADDB=26ec8aac122bd4f6e-3.


同步練習冊答案