12.如圖.F為橢圓的焦點(diǎn).橢圓上的點(diǎn)Mi與M7-i(i=1.2.3)關(guān)于x軸對(duì)稱.則|M1F|+|M2F|+-+|M6F|= . 查看更多

 

題目列表(包括答案和解析)

如圖,F(xiàn)為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn),P為橢圓上一點(diǎn),O為原點(diǎn),記△OFP的面積為S,且
OF
FP
=1

(1)設(shè)
1
2
<S<
3
2
,求向量
OF
FP
夾角的取值范圍.
(2)設(shè)|
OF
|=c
,S=
3
4
c
,當(dāng)c≥2時(shí),求當(dāng)|
OP
|
取最小值時(shí)的橢圓方程.

查看答案和解析>>

如圖,F(xiàn)為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn),P為橢圓上一點(diǎn),O為原點(diǎn),記△OFP的面積為S,且
OF
FP
=1

(1)設(shè)
1
2
<S<
3
2
,求向量
OF
FP
夾角的取值范圍.
(2)設(shè)|
OF
|=c
,S=
3
4
c
,當(dāng)c≥2時(shí),求當(dāng)|
OP
|
取最小值時(shí)的橢圓方程.
精英家教網(wǎng)

查看答案和解析>>

如圖,F(xiàn)是橢圓的右焦點(diǎn),以點(diǎn)F為圓心的圓過原點(diǎn)O和橢圓的右頂點(diǎn),設(shè)P是橢圓上的動(dòng)點(diǎn),P到橢圓兩焦點(diǎn)的距離之和等于4.

(1)求橢圓和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線l的方程為x=4,PM⊥l,垂足為M,是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

如圖,已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請(qǐng)說明理由;
(2)寫出與橢圓C1相似且半短軸長(zhǎng)為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(zhì)(不需證明);
(3)已知直線l:y=x+1,在橢圓Cb上是否存在兩點(diǎn)M、N關(guān)于直線l對(duì)稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

查看答案和解析>>

如圖,F(xiàn)是橢圓的右焦點(diǎn),以點(diǎn)F為圓心的圓過原點(diǎn)O和橢圓的右頂點(diǎn),設(shè)P是橢圓上的動(dòng)點(diǎn),P到橢圓兩焦點(diǎn)的距離之和等于4.

(1)求橢圓和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l的方程為x=4,PM⊥l,垂足為M,是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

 

1.A    2.B    3.C    4.C    5.A    6.C   7.D    8.D   9.A   10.C

11.80    12.30    13.c    14.   15. .

三、解答題

16.解:(1)(ka+b)2=3(a-kb)2   k2++2ka?b=3(1+k2-2ka?b)

a?b=  當(dāng)k=1時(shí)取等號(hào).                                (6分)

   (2)a?b=

       

        ∴時(shí),a?b=取最大值1.                                                               (12分)

17.解:(1)由已知有xn+1-1=2(xn-1)

∴{xn-1}是以1為首項(xiàng)以2為公比的等比數(shù)列,又x1=2.

xn-1=2n-1   ∴xn=1+2n-1(n∈N*)                                                             (6分)

   (2)由

又當(dāng)nN*時(shí),xn≥2故點(diǎn)(xn,yn)在射線x+y=3(xn≥2)上。                (12分)

18.解:(1)記乙勝為事件A,則PA)=

       (2)解法一:由題意:(x,y)=(1,4)或(1,3)

    或(1,2)或(1,1)或(2,3)或(2,2)

    或(2,1)或(3,2)或(3,1)或(4,1)。

    故當(dāng)x=1,y=4時(shí),x+2y取最大值9,即x=1,

    y=4時(shí)乙獲勝的概率最大為.(12分)

    解法二:令t=x+2y,,(x,y)取值如圖所示,由

    線性規(guī)劃知識(shí)知x=1,y=4時(shí),t最大,

    x=1,y=4,乙獲勝的概率最大為.                                                   (12分)

    19.解(1)設(shè)正三棱柱的側(cè)棱長(zhǎng)為.取中點(diǎn),連

    是正三角形,

    又底面側(cè)面,且交線為

    側(cè)面.……3分

    ,則直線與側(cè)面所成的角為

    中,,解得

    此正三棱柱的側(cè)棱長(zhǎng)為.                       ……5分

    (2)過,連,

    側(cè)面為二面角的平面角.…7分

    中,,

    ,

    中,

    故二面角的大小為.         ……9分

    (3)解法1:由(2)可知,平面,平面平面,且交線為,

    ,則平面.……11分

    中,

    中點(diǎn),點(diǎn)到平面的距離為.  ………… 13

    20.解:

     

    21.解:(1)

    ,故橢圓Qn的焦距2cn≥1.                                                            (4分)

       (2)(i)設(shè)Pn(xnyn),則

            

     

     

     

     

     

     


    同步練習(xí)冊(cè)答案