面即為面的法向量. 查看更多

 

題目列表(包括答案和解析)

動(dòng)物中的數(shù)學(xué)“天才”

  蜜蜂蜂房是嚴(yán)格的六角柱狀體,它的一端是平整的六角形開(kāi)口,另一端是封閉的六角菱錐形的底,由三個(gè)相同的菱形組成.組成底盤(pán)的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅(jiān)固又省料.蜂房的巢壁厚0.073毫米,誤差極。

  丹頂鶴總是成群結(jié)隊(duì)遷飛,而且排成“人”字形.“人”字形的角度是110度.更精確地計(jì)算還表明“人”字形夾角的一半——即每邊與鶴群前進(jìn)方向的夾角為54度44分8秒!而金剛石結(jié)晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的“默契”?

  蜘蛛結(jié)的“八卦”形網(wǎng),是既復(fù)雜又美麗的八角形幾何圖案,人們即使用直尺的圓規(guī)也很難畫(huà)出像蜘蛛網(wǎng)那樣勻稱的圖案.

  冬天,貓睡覺(jué)時(shí)總是把身體抱成一個(gè)球形,這其間也有數(shù)學(xué),因?yàn)榍蛐问股眢w的表面積最小,從而散發(fā)的熱量也最少.

  真正的數(shù)學(xué)“天才”是珊瑚蟲(chóng).珊瑚蟲(chóng)在自己的身上記下“日歷”,它們每年在自己的體壁上“刻畫(huà)”出365條斑紋,顯然是一天“畫(huà)”一條.奇怪的是,古生物學(xué)家發(fā)現(xiàn)3億5千萬(wàn)年前的珊瑚蟲(chóng)每年“畫(huà)”出400幅“水彩畫(huà)”.天文學(xué)家告訴我們,當(dāng)時(shí)地球一天僅21.9小時(shí),一年不是365天,而是400天.

1.同學(xué)們,大自然中有許多有關(guān)數(shù)學(xué)的奧妙,許多現(xiàn)象有意無(wú)意地應(yīng)用著數(shù)學(xué),對(duì)于這些現(xiàn)象你有什么看法嗎?請(qǐng)你談?wù)勀銓?duì)大自然中的數(shù)學(xué)現(xiàn)象的認(rèn)識(shí).

2.把你發(fā)現(xiàn)的大自然中的數(shù)學(xué)問(wèn)題告訴你的同學(xué)和老師,讓他們也分享一下你認(rèn)識(shí)大自然的樂(lè)趣.

查看答案和解析>>

請(qǐng)先閱讀:

設(shè)平面向量=(a1,a2),=(b1,b2),且的夾角為è,

因?yàn)?sub>=||||cosè,

所以≤||||.

,

當(dāng)且僅當(dāng)è=0時(shí),等號(hào)成立.

(I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對(duì)于任意a1,a2,a3,b1,b2,b3∈R,都有成立;

(II)試求函數(shù)的最大值.

查看答案和解析>>

請(qǐng)先閱讀:
設(shè)平面向量=(a1,a2),=(b1,b2),且的夾角為θ,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103173308509124483/SYS201311031733085091244018_ST/4.png">•=||||cosθ,
所以≤||||.
,
當(dāng)且僅當(dāng)θ=0時(shí),等號(hào)成立.
(I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對(duì)于任意a1,a2,a3,b1,b2,b3∈R,都有成立;
(II)試求函數(shù)的最大值.

查看答案和解析>>

在空間中,“經(jīng)過(guò)點(diǎn)P(x0,y0,z0),法向量為
e
=(A,B,C)
的平面的方程(即平面上任意一點(diǎn)的坐標(biāo)(x,y,z)滿足的關(guān)系)是:A(x-x0)+B(y-y0)+C(z-z0)=0”.如果給出平面α的方程是x-y+z=1,平面β的方程是
x
6
-
y
3
-
z
6
=1
,則由這兩平面所成的二面角的正弦值是(  )
A、
7
3
B、
6
3
C、
78
9
D、
1
3

查看答案和解析>>

在空間中,“經(jīng)過(guò)點(diǎn)P(x,y,z),法向量為的平面的方程(即平面上任意一點(diǎn)的坐標(biāo)(x,y,z)滿足的關(guān)系)是:A(x-x)+B(y-y)+C(z-z)=0”.如果給出平面α的方程是x-y+z=1,平面β的方程是,則由這兩平面所成的二面角的正弦值是( )
A.
B.
C.
D.

查看答案和解析>>


同步練習(xí)冊(cè)答案