解:(I)由方程消得.????? ①依題意.該方程有兩個(gè)正實(shí)根. 查看更多

 

題目列表(包括答案和解析)

給出問(wèn)題:已知滿足,試判定的形狀.某學(xué)生的解答如下:

解:(i)由余弦定理可得,

,

,

是直角三角形.

(ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價(jià)于

,

是等腰三角形.

綜上可知,是等腰直角三角形.

請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫(xiě)出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫(xiě)出你認(rèn)為本題正確的結(jié)果.           .

 

查看答案和解析>>

已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為,

(1)若方程有兩個(gè)相等的根,求的解析式;

(2)若的最大值為正數(shù),求的取值范圍.

【解析】第一問(wèn)中利用∵f(x)+2x>0的解集為(1,3),

設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。

第二問(wèn)中,

解:(1)∵f(x)+2x>0的解集為(1,3),

   ①

由方程

              ②

∵方程②有兩個(gè)相等的根,

,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故當(dāng)f(x)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是

 

查看答案和解析>>

學(xué)校要用三輛車(chē)從北湖校區(qū)把教師接到文廟校區(qū),已知從北湖校區(qū)到文廟校區(qū)有兩條公路,汽車(chē)走公路①堵車(chē)的概率為,不堵車(chē)的概率為;汽車(chē)走公路②堵車(chē)的概率為,不堵車(chē)的概率為,若甲、乙兩輛汽車(chē)走公路①,丙汽車(chē)由于其他原因走公路②,且三輛車(chē)是否堵車(chē)相互之間沒(méi)有影響。(I)若三輛車(chē)中恰有一輛車(chē)被堵的概率為,求走公路②堵車(chē)的概率;(Ⅱ)在(I)的條件下,求三輛車(chē)中被堵車(chē)輛的個(gè)數(shù)的分布列和數(shù)學(xué)期望。

【解析】第一問(wèn)中,由已知條件結(jié)合n此獨(dú)立重復(fù)試驗(yàn)的概率公式可知,得

第二問(wèn)中可能的取值為0,1,2,3  ,       

 , 

從而得到分布列和期望值

解:(I)由已知條件得 ,即,則的值為。

 (Ⅱ)可能的取值為0,1,2,3  ,       

 , 

   的分布列為:(1分)

 

0

1

2

3

 

 

 

 

所以 

 

查看答案和解析>>

如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且,是母線的中點(diǎn).

(1)求圓錐體的體積;

(2)異面直線所成角的大。ńY(jié)果用反三角函數(shù)表示).

【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

第一問(wèn)中,由題意,,故

從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

解:(1)由題意,

從而體積.

(2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

由SO平面OAB,PH平面OAB,PHAH.

OAH中,由OAOB得;

中,,PH=1/2SB=2,,

,所以異面直線SO與P成角的大arctan

 

查看答案和解析>>

如圖,測(cè)量河對(duì)岸的塔高時(shí),可以選與塔底在同一水平面內(nèi)的兩個(gè)測(cè)點(diǎn).現(xiàn)測(cè)得,并在點(diǎn)測(cè)得塔頂的仰角為, 求塔高(精確到,

【解析】本試題主要考查了解三角形的運(yùn)用,利用正弦定理在中,得到,然后在中,利用正切值可知

解:在中,

由正弦定理得:,所以

中,

 

查看答案和解析>>


同步練習(xí)冊(cè)答案