綜上所述.直線方程為y=x+4.橢圓方程為. 查看更多

 

題目列表(包括答案和解析)

已知橢圓的中心在原點,焦點在x軸上,離心率為
3
2
,且經(jīng)過點M(4,1),直線l:y=x+m交橢圓于不同的兩點A,B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線l不過點M,求證:直線MA、MB與x軸圍成一個等腰三角形.

查看答案和解析>>

精英家教網(wǎng)如圖,已知焦點在x軸上的橢圓
x2
20
+
y2
b2
=1(b>0)
經(jīng)過點M(4,1),直線l:y=x+m交橢圓于A,B兩不同的點.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)求實數(shù)m的取值范圍;
(3)是否存在實數(shù)m,使△ABM為直角三角形,若存在,求出m的值,若不存,請說明理由.

查看答案和解析>>

已知橢圓的中心在原點,焦點在x軸上,離心率為
3
2
,且經(jīng)過點M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點.
(1)求橢圓的方程.
(2)求m的取值范圍.
(3)當(dāng)m=1時,求弦長|AB|的值.

查看答案和解析>>

精英家教網(wǎng)已知橢圓的中心在原點,焦點在x軸上,離心率為
3
2
,且經(jīng)過點M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l不過點M,求證:直線MA,MB與x軸圍成等腰三角形.

查看答案和解析>>

已知橢圓的中心在原點,焦點在x軸上,離心率為
3
2
,且經(jīng)過點M(4,1),直線l:y=x+m交橢圓于不同的兩點A、B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求m的取值范圍;
(Ⅲ)若直線l不過點M,求證:直線MA、MB的斜率互為相反數(shù).

查看答案和解析>>


同步練習(xí)冊答案