8.已知直線.圓.若圓心到直線的距離最小.則實(shí)數(shù)的取值為 查看更多

 

題目列表(包括答案和解析)

已知直線l1:(2m+1)x+(m+1)y-7m-5=0(m∈R)和直線l1:x+3y-5=0,圓C:x2+y2-2x-4y=0.
(1)當(dāng)m為何值時(shí),l1∥l2?
(2)是否存在點(diǎn)P,使得不論m為何值,直線l1都經(jīng)過(guò)點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)試判斷直線l1與圓C的位置關(guān)系.若相交,求截得的弦長(zhǎng)最短時(shí)m的值以及最短長(zhǎng)度;若相切,求切點(diǎn)的坐標(biāo);若相離,求圓心到直線l1的距離的最大值.

查看答案和解析>>

已知直線為參數(shù)),圓(極軸與軸的非負(fù)半軸重合,且單位長(zhǎng)度相同)。

⑴求圓心到直線的距離;

⑵若直線被圓截的弦長(zhǎng)為,求的值。

 

查看答案和解析>>

已知直線為參數(shù)),圓(極軸與軸的非負(fù)半軸重合,且單位長(zhǎng)度相同)。
⑴求圓心到直線的距離;
⑵若直線被圓截的弦長(zhǎng)為,求的值。

查看答案和解析>>

已知直線l1:(2m+1)x+(m+1)y-7m-5=0(m∈R)和直線l1:x+3y-5=0,圓C:x2+y2-2x-4y=0.
(1)當(dāng)m為何值時(shí),l1l2
(2)是否存在點(diǎn)P,使得不論m為何值,直線l1都經(jīng)過(guò)點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)試判斷直線l1與圓C的位置關(guān)系.若相交,求截得的弦長(zhǎng)最短時(shí)m的值以及最短長(zhǎng)度;若相切,求切點(diǎn)的坐標(biāo);若相離,求圓心到直線l1的距離的最大值.

查看答案和解析>>

已知直線l1:(2m+1)x+(m+1)y-7m-5=0(m∈R)和直線l1:x+3y-5=0,圓C:x2+y2-2x-4y=0.
(1)當(dāng)m為何值時(shí),l1∥l2?
(2)是否存在點(diǎn)P,使得不論m為何值,直線l1都經(jīng)過(guò)點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)試判斷直線l1與圓C的位置關(guān)系.若相交,求截得的弦長(zhǎng)最短時(shí)m的值以及最短長(zhǎng)度;若相切,求切點(diǎn)的坐標(biāo);若相離,求圓心到直線l1的距離的最大值.

查看答案和解析>>

1.C   2.D   3.D   4.B   5.C   6.C   7.D   8.B   9.C   1 0.A  11.B   12.B

13.  14.  15.    16.3或5

提示:

1.C  ,故它的虛部為.(注意:復(fù)數(shù)的虛部不是而是)

2.D 解不等式,得,∴,

,故

3.D ,,∴,∴

4.B  兩式相減得,∴,∴

5.C  令,解得,∴

6.C  由已知有解得

7.D   由正態(tài)曲線的對(duì)稱性和,知,即正態(tài)曲線關(guān)于直線對(duì)稱,于是,,所以

8.B  圓心到直線的距離最小為0,即直線經(jīng)過(guò)圓心

,∴,∴

9.C  對(duì)于A、D,不是對(duì)稱軸;對(duì)于B,電不是偶函數(shù);對(duì)于C,符合要求.

10.A   設(shè)兩個(gè)截面圓的圓心分刷為,公共弦的中點(diǎn)為M,則四邊形為矩形,∴

11. B  應(yīng)先求出2人坐進(jìn)20個(gè)座位的排法。排除2人相鄰的情況即可。

共有11+12=23個(gè)座位,去掉前排中間3個(gè)不能入坐的座位,還有20個(gè)座位,則2人坐入20個(gè)座位的排法有種,排除①兩人坐前排相鄰的12種情況;②兩人坐后排相鄰的22種情況,∴不同排法的種數(shù)有(種).

12.B 拋物線的準(zhǔn)線,焦點(diǎn)為,由為直角三角形,知為斜邊,故意,又將代入雙曲線方程得,得,解得,∴離心率為。

13.    展開式中的的系數(shù)是,

14.   ,∴

15.   設(shè)棱長(zhǎng)均為2,由圖知的距離相等,而到平面的距離為,故所成角的正弦值為

               

                     

                       

                           

               

              

16.3或5    作出可行域(如圖),知在直線上,

    ∴,,在直線中,

    令,得,∴坐標(biāo)為,∴,

    解得或5。

17.解:(1)由,得,…2分

,∵,∴,∴

…………………………………………………………………………4分

,∴………………………………………5分

(2)∵,∴

……………8分

,∴,∴……………10分

18.解:(1)證明:延長(zhǎng)相交于點(diǎn),連結(jié)

,且,∴的中點(diǎn),的中點(diǎn)。

的中點(diǎn),由三角形中位線定理,有

平面,平面,∴平面…………………6分

(2)(法一)由(1)知平面平面。

的中點(diǎn),∴取的中點(diǎn),則有

,∴

平面,∴在平面上的射影,∴

為平面與平面所成二面角的平面角!10分

∵在中,,,

,即平面與平面所成二面角的大小為!12分

(法二)如圖,∵平面,,

平面,

的中點(diǎn)為坐標(biāo)原點(diǎn),以過(guò)且平行的直線為軸,所在的直線為 軸,所在的直線為軸,建立空間直角坐標(biāo)系。

設(shè),則,,

,

高考資源網(wǎng)
www.ks5u.com設(shè)為平面的法向量,

   

,可得

又平面的法向量為,設(shè)所成的角為,………………… 8分

由圖可知平面與平面所成二面角為銳角。

∴平面與平面所成二面角的大小為………………………………12分

19.解:(1)由已知得,∵,∴

     ∵、是方程的兩個(gè)根,∴

,…………………………………………6分

(2)的可能取值為0,100,200,300,400

,,

,

的分布列為:

……………………………………………………10分

………………………12分

20.解:(1)∵,∴,∴

又∵,∴數(shù)列是首項(xiàng)為1,公比為3的等比數(shù)列,

當(dāng)時(shí),),∴

(2)

當(dāng)時(shí),;

當(dāng)時(shí),,①

①-②得:

又∵也滿足上式:∴……………………12分

21.解:的定義域?yàn)?sub>……………………………………………………1分

(1)

……………………………………………………3分

當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),。

從而分別在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減

……………………………………………………6分

(2)由(1)知在區(qū)間上的最小值為……………8分

所以在區(qū)間上的最大值為…………………12分

22.解(1)將直線的方程代入,

化簡(jiǎn)得

,

同步練習(xí)冊(cè)答案