題目列表(包括答案和解析)
設(shè)命題:方程表示的圖象是雙曲線(xiàn);命題:,.求使“且”為真命題時(shí),實(shí)數(shù)的取值范圍.
【解析】本試題考查了雙曲線(xiàn)的方程的運(yùn)用,以及不等式有解時(shí),參數(shù)的取值范圍問(wèn)題,以及符合命題的真值的判定綜合試題。
設(shè)命題:方程表示的圖象是雙曲線(xiàn);命題:,.求使“且”為真命題時(shí),實(shí)數(shù)的取值范圍.
【解析】本試題考查了雙曲線(xiàn)的方程的運(yùn)用,以及不等式有解時(shí),參數(shù)的取值范圍問(wèn)題,以及符合命題的真值的判定綜合試題。
等軸雙曲線(xiàn)的中心在原點(diǎn),焦點(diǎn)在軸上,與拋物線(xiàn)的準(zhǔn)線(xiàn)交于兩點(diǎn),;則的實(shí)軸長(zhǎng)為( )
【解析】設(shè)等軸雙曲線(xiàn)方程為,拋物線(xiàn)的準(zhǔn)線(xiàn)為,由,則,把坐標(biāo)代入雙曲線(xiàn)方程得,所以雙曲線(xiàn)方程為,即,所以,所以實(shí)軸長(zhǎng),選C.
,,為常數(shù),離心率為的雙曲線(xiàn):上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線(xiàn):的焦點(diǎn)與雙曲線(xiàn)的一頂點(diǎn)重合。(Ⅰ)求拋物線(xiàn)的方程;(Ⅱ)過(guò)直線(xiàn):(為負(fù)常數(shù))上任意一點(diǎn)向拋物線(xiàn)引兩條切線(xiàn),切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。
【解析】第一問(wèn)中利用由已知易得雙曲線(xiàn)焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線(xiàn)的上頂點(diǎn)為,所以?huà)佄锞(xiàn)的方程
第二問(wèn)中,為,,,
故直線(xiàn)的方程為,即,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,是方程的兩個(gè)不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線(xiàn)焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線(xiàn)的上頂點(diǎn)為,所以?huà)佄锞(xiàn)的方程
(Ⅱ)設(shè)為,,,
故直線(xiàn)的方程為,即,
所以,同理可得:,
即,是方程的兩個(gè)不同的根,所以
由已知易得,即
設(shè)雙曲線(xiàn)的兩個(gè)焦點(diǎn)分別為、,離心率為2.
(1)求雙曲線(xiàn)的漸近線(xiàn)方程;
(2)過(guò)點(diǎn)能否作出直線(xiàn),使與雙曲線(xiàn)交于、兩點(diǎn),且,若存在,求出直線(xiàn)方程,若不存在,說(shuō)明理由.
【解析】(1)根據(jù)離心率先求出a2的值,然后令雙曲線(xiàn)等于右側(cè)的1為0,解此方程可得雙曲線(xiàn)的漸近線(xiàn)方程.
(2)設(shè)直線(xiàn)l的方程為,然后直線(xiàn)方程與雙曲線(xiàn)方程聯(lián)立,消去y,得到關(guān)于x的一元二次方程,利用韋達(dá)定理表示此條件,得到關(guān)于k的方程,解出k的值,然后驗(yàn)證判別式是否大于零即可.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com