一般地,給出函數(shù)f(x)在區(qū)間[x1.x2]上的平均變化率.實(shí)質(zhì)是連接兩點(diǎn)直線的斜率 查看更多

 

題目列表(包括答案和解析)

給出函數(shù)f(x)=
x2x2+1
的四個(gè)性質(zhì):
①f(x)在R上是增函數(shù);
②f(x)的值域是[0,1);
③f(x)的圖象關(guān)于y軸對稱;
④f(x)存在最大值.
上述四個(gè)性質(zhì)中所有正確結(jié)論的序號是

查看答案和解析>>

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R)
,甲、乙、丙三位同學(xué)在研究此函數(shù)時(shí)分別給出命題:
甲:函數(shù)f(x)的值域?yàn)椋?1,1);
乙:若x1≠x2則一定有f(x1)≠f(x2);
丙:若規(guī)定f1(x)=f(x),fn(x)=f(f1(x)),則fn(x)=
x
1+nx
,對任意的n∈N*恒成立
你認(rèn)為上述三個(gè)命題中正確的個(gè)數(shù)有( 。
A、3個(gè)B、2個(gè)C、1個(gè)D、0個(gè)

查看答案和解析>>

(2006•寶山區(qū)二模)給出函數(shù)f(x)=
x2+4
+tx
(x∈R).
(1)當(dāng)t≤-1時(shí),證明y=f(x)是單調(diào)遞減函數(shù);
(2)當(dāng)t=
1
2
時(shí),可以將f(x)化成f(x)=a(
x2+4
+x)+b(
x2+4
-x)
的形式,運(yùn)用基本不等式求f(x)的最小值及此時(shí)x的取值;
(3)設(shè)一元二次函數(shù)g(x)的圖象均在x軸上方,h(x)是一元一次函數(shù),記F(x)=
g(x)
+h(x)
,利用基本不等式研究函數(shù)F(x)的最值問題.

查看答案和解析>>

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R)
,三位同學(xué)甲、乙、丙在研究此函數(shù)時(shí)分別給出命題:
①函數(shù)f(x)的值域?yàn)?span id="9bjz53p" class="MathJye">(-
1
2
,
1
2
);
②若x1≠x2,則一定有f(x1)≠f(x2);
③若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)), 則 fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
你認(rèn)為上述三個(gè)命題中正確的是
 

查看答案和解析>>

一次研究性課堂上,老師給出函數(shù)f(x)=
x
1+|x|
(x∈R)
,三位同學(xué)甲、乙、丙在研究此函數(shù)時(shí)分別依次對應(yīng)給出下列命題
①函數(shù)f(x)的值域?yàn)椋?1,1);
②若x1≠x2,則一定有f (x1)≠f (x2);
③若規(guī)定f1(x)=f(x),fn(x)=f(fn-1(x)), 則 fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
你認(rèn)為上述三個(gè)命題中正確的題號是
①②③
①②③

查看答案和解析>>


同步練習(xí)冊答案