如圖.在直線l上任意一點(diǎn)為P,則在三角形POM中.有:.因∠OMP=π-α+θ0,∠OPM=α-θ ∴直線l的極坐標(biāo)方程為ρsin=ρ0sin(θ0-α)(2)思考問題:①ρ0=0時.方程是什么?畫出圖形 查看更多

 

題目列表(包括答案和解析)

如圖,在△OAB中,C為OA上的一點(diǎn),且數(shù)學(xué)公式是BC的中點(diǎn),過點(diǎn)A的直線l∥OD,P是直線l上的任意點(diǎn),若數(shù)學(xué)公式,則λ12=________.

查看答案和解析>>

(2013•杭州二模)如圖,在△OAB中,C為OA上的一點(diǎn),且
OC
=
2
3
OA
,D
是BC的中點(diǎn),過點(diǎn)A的直線l∥OD,P是直線l上的任意點(diǎn),若
OP
=λ1
OB
+λ2
OC
,則λ12=
-
3
2
-
3
2

查看答案和解析>>

.(考生注意:請?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評分)

A.(幾何證明選講選做題)如圖,已知的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,則BD的長為=        ;

 

 

 

B.(不等式選講選做題)關(guān)于x的不等式的解集為空集,則實(shí)數(shù)a的取值范圍是         ;

C.(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為為參數(shù)),直線l的極坐標(biāo)方程為.點(diǎn)P在曲線C上,則點(diǎn)P到直線l的距離的最小值為                 .

 

查看答案和解析>>

已知函數(shù)f(x)=ex-ax(a∈R).
(Ⅰ) 寫出函數(shù)y=f(x)的圖象恒過的定點(diǎn)坐標(biāo);
(Ⅱ)直線L為函數(shù)y=φ(x)的圖象上任意一點(diǎn)P(x0,y0)處的切線(P為切點(diǎn)),如果函數(shù)y=φ(x)圖象上所有的點(diǎn)(點(diǎn)P除外)總在直線L的同側(cè),則稱函數(shù)y=φ(x)為“單側(cè)函數(shù)”.
(i)當(dāng)a=
1
2
判斷函數(shù)y=f(x)是否為“單側(cè)函數(shù)”,若是,請加以證明,若不是,請說明理由.
(i i)求證:當(dāng)x∈(-2,+∞)時,ex+
1
2
x≥ln(
1
2
x+1)+1.

查看答案和解析>>

已知函數(shù)f(x)=ex-ax(a∈R).
(Ⅰ) 寫出函數(shù)y=f(x)的圖象恒過的定點(diǎn)坐標(biāo);
(Ⅱ)直線L為函數(shù)y=φ(x)的圖象上任意一點(diǎn)P(x0,y0)處的切線(P為切點(diǎn)),如果函數(shù)y=φ(x)圖象上所有的點(diǎn)(點(diǎn)P除外)總在直線L的同側(cè),則稱函數(shù)y=φ(x)為“單側(cè)函數(shù)”.
(i)當(dāng)a=數(shù)學(xué)公式判斷函數(shù)y=f(x)是否為“單側(cè)函數(shù)”,若是,請加以證明,若不是,請說明理由.
(i i)求證:當(dāng)x∈(-2,+∞)時,ex+數(shù)學(xué)公式x≥ln(數(shù)學(xué)公式x+1)+1.

查看答案和解析>>


同步練習(xí)冊答案