直線的斜率為.所以切線斜率為2. 查看更多

 

題目列表(包括答案和解析)

曲線y=x3在點(1,1)的切線與x軸、直線x=2所圍成的三角形面積為_________.

[考場錯解] 填2 由曲線y=x3在點(1,1)的切線斜率為1,∴切線方程為y-1==x-1,y=x.所以三條直線y=x,x=0,x=2所圍成的三角形面積為S=×2×2=2。

查看答案和解析>>

以下五個命題中:
①若兩直線平行,則兩直線斜率相等;
②設(shè)F1、F2為兩個定點,a為正常數(shù),且||PF1|-|PF2||=2a,則動點P的軌跡為雙曲線;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④對任意實數(shù)k,直線l:kx-y+1-k=0與圓x2+y2-2y-4=0的位置關(guān)系是相交;
⑤P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,F(xiàn)為它的一個焦點,則以PF為直徑的圓與以長軸為直徑的圓相切.
其中真命題的序號為
③④⑤
③④⑤
.(寫出所有真命題的序號)

查看答案和解析>>

平面直角坐標(biāo)系中,直線截以原點為圓心的圓所得的弦長為
(1)求圓的方程;
(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于,當(dāng)長最小時,求直線的方程;
(3)問是否存在斜率為的直線,使被圓截得的弦為,以為直徑的圓經(jīng)過原點.若存在,寫出直線的方程;若不存在,說明理由.

查看答案和解析>>

平面直角坐標(biāo)系中,直線截以原點為圓心的圓所得的弦長為
(1)求圓的方程;
(2)若直線與圓切于第一象限,且與坐標(biāo)軸交于,當(dāng)長最小時,求直線的方程;
(3)問是否存在斜率為的直線,使被圓截得的弦為,以為直徑的圓經(jīng)過原點.若存在,寫出直線的方程;若不存在,說明理由.

查看答案和解析>>

如圖,線段ABy軸上一點N(0,m),AB所在直線的斜率為k(k≠0),兩端點A,By軸的距離之差為4k.

(1)求以y軸為對稱軸,過A,O,B三點的拋物線方程;

(2)過拋物線的焦點F作動弦CD,過CD兩點分別作拋物線的切線,設(shè)其交點為M,求點M的軌跡方程,并求的值

查看答案和解析>>


同步練習(xí)冊答案