12.如圖.△ABC中.BC=8.DA⊥BC于D.當(dāng)頂點(diǎn)A從點(diǎn)D向上運(yùn)動(dòng)時(shí).△ABC的面積發(fā)生變化.若設(shè)△ABC的面積為y. DA=x.那么y隨x變化的關(guān)系式是(A)y=8x (B)y=6x (C)y=4x (D)y=2x 查看更多

 

題目列表(包括答案和解析)

如圖①,在等腰直角三角板ABC中,斜邊BC為2個(gè)單位長(zhǎng)度,現(xiàn)把這塊三角板在平面直角坐標(biāo)系xOy中滑動(dòng),并使B、C兩點(diǎn)始終分別位于y軸、x軸的正半軸上,直角頂點(diǎn)A與原點(diǎn)O位于BC兩側(cè).
(1)取BC中點(diǎn)D,問(wèn)OD+DA是否發(fā)生改變,若會(huì),說(shuō)明理由;若不會(huì),求出OD+DA;
(2)你認(rèn)為OA的長(zhǎng)度是否會(huì)發(fā)生變化?若變化,那么OA最長(zhǎng)是多少?OA最長(zhǎng)時(shí)四邊形OBAC是怎樣的四邊形?并說(shuō)明理由;
(3)填空:當(dāng)OA最長(zhǎng)時(shí)A的坐標(biāo)(
2
2
,
2
2
),直線OA的解析式
y=x
y=x

查看答案和解析>>

如圖,在△ABC中,已知AB=AC=5,BC=6,點(diǎn)D是BC上一點(diǎn),以DA為一邊,點(diǎn)D為頂點(diǎn)作∠ADE=∠C,DE交線段AC于點(diǎn)E.
(1)求證:△ABD∽△DCE.
(2)當(dāng)AE=ED時(shí),求BD的長(zhǎng).

查看答案和解析>>

如圖,在△ABC中,已知AB=AC=5,BC=6,點(diǎn)D是BC上一點(diǎn),以DA為一邊,點(diǎn)D為頂點(diǎn)作∠ADE=∠C,DE交線段AC于點(diǎn)E.
(1)求證:△ABD∽△DCE.
(2)當(dāng)AE=ED時(shí),求BD的長(zhǎng).

查看答案和解析>>

已知:一元二次方程

(1)求證:不論k為何實(shí)數(shù)時(shí),此方程總有兩個(gè)實(shí)數(shù)根;

(2)設(shè)k<0,當(dāng)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)A、B間的距離為4時(shí),求此二次函數(shù)的解析式;

(3)在(2)的條件下,若拋物線的頂點(diǎn)為C,過(guò)y軸上一點(diǎn)M(0,m)作y軸的垂線l,當(dāng)m為何值時(shí),直線l與△ABC的外接圓有公共點(diǎn)?

如圖,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一邊QP在BC邊上,E、F分別在AB、AC上,AD交EF于點(diǎn)H.

(1)求證:

(2)設(shè)EF=x,當(dāng)x為何值時(shí),矩形EFPQ的面積最大?并求出最大面積;

(3)當(dāng)矩形EFPQ的面積最大時(shí),該矩形EFPQ以每秒1個(gè)單位的速度沿射線DA勻速向上運(yùn)動(dòng)(當(dāng)矩形的邊PQ到達(dá)A點(diǎn)時(shí)停止運(yùn)動(dòng)),設(shè)運(yùn)動(dòng)時(shí)間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍.

查看答案和解析>>

閱讀下列材料:
小明遇到一個(gè)問(wèn)題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過(guò)△ABC的一個(gè)頂點(diǎn)畫(huà)一條直線,將此三角形分割成兩個(gè)等腰三角形.
他的做法是:如圖2,首先保留最小角∠C,然后過(guò)三角形頂點(diǎn)A畫(huà)直線交BC于點(diǎn)D.將∠BAC分成兩個(gè)角,使∠DAC=20°,△ABC即可被分割成兩個(gè)等腰三角形.
喜歡動(dòng)腦筋的小明又繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個(gè)角滿足怎樣的數(shù)量關(guān)系時(shí),此三角形一定可以被過(guò)頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.
他的做法是:如圖3,先畫(huà)△ADC,使DA=DC,延長(zhǎng)AD到點(diǎn)B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB=∠ABC,因?yàn)椤螩DB=2∠A,所以∠ABC=2∠A.于是小明得到了一個(gè)結(jié)論:
當(dāng)三角形中有一個(gè)角是最小角的2倍時(shí),則此三角形一定可以被過(guò)頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.
請(qǐng)你參考小明的做法繼續(xù)探究:當(dāng)三角形內(nèi)角中的兩個(gè)角滿足怎樣的數(shù)量關(guān)系時(shí),此三角形一定可以被過(guò)頂點(diǎn)的一條直線分割成兩個(gè)等腰三角形.請(qǐng)直接寫(xiě)出你所探究出的另外兩條結(jié)論(不必寫(xiě)出探究過(guò)程或理由).

查看答案和解析>>


同步練習(xí)冊(cè)答案