題目列表(包括答案和解析)
|
y |
x-1 |
設(shè)滿足約束條件:的可行域為
1)在所給的坐標(biāo)系中畫出可行域(用陰影表示,并注明邊界的交點或直線);
2)求的最大值與的最小值;
3)若存在正實數(shù),使函數(shù)的圖象經(jīng)過區(qū)域中的點,
求這時的取值范圍.
某農(nóng)場預(yù)算用5600元購買單價為50元(每噸)的鉀肥和20元(每噸)的氮肥,希望使兩種肥料的總數(shù)量(噸)盡可能的多,但氮肥噸數(shù)不少于鉀肥噸數(shù),且不多于鉀肥噸數(shù)的1.5倍.
(1) 設(shè)買鉀肥噸,買氮肥噸,按題意列出約束條件、畫出可行域,并求鉀肥、氮肥各買多少才行?
(2) 設(shè)點在(1)中的可行域內(nèi),求的取值范圍;
(3) 已知,O是原點, 在(1)中的可行域內(nèi),求的取值范圍.
如圖,直線與拋物線交于兩點,與軸相交于點,且.
(1)求證:點的坐標(biāo)為;
(2)求證:;
(3)求的面積的最小值.
【解析】設(shè)出點M的坐標(biāo),并把過點M的方程設(shè)出來.為避免對斜率不存在的情況進行討論,可以設(shè)其方程為,然后與拋物線方程聯(lián)立消x,根據(jù),即可建立關(guān)于的方程.求出的值.
(2)在第(1)問的基礎(chǔ)上,證明:即可.
(3)先建立面積S關(guān)于m的函數(shù)關(guān)系式,根據(jù)建立即可,然后再考慮利用函數(shù)求最值的方法求最值.
已知曲線和相交于點A,
(1)求A點坐標(biāo);
(2)分別求它們在A點處的切線方程(寫成直線的一般式方程);
(3)求由曲線在A點處的切線及以及軸所圍成的圖形面積。(畫出草圖)
【解析】本試題主要考察了導(dǎo)數(shù)的幾何意義的運用,以及利用定積分求解曲邊梯形的面積的綜合試題。先確定切點,然后求解斜率,最后得到切線方程。而求解面積,要先求解交點,確定上限和下限,然后借助于微積分基本定理得到。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com