題目列表(包括答案和解析)
如圖,直線,連結(jié),直線及線段把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點落在某個部分時,連結(jié),構(gòu)成,,三個角.(提示:有公共端點的兩條重合的射線所組成的角是角.)
(1)當動點落在第①部分時,求證:;
(2)當動點落在第②部分時,是否成立(直接回答成立或不成立)?
(3)當動點在第③部分時,全面探究,,之間的關(guān)系,并寫出動點的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.
如圖,直線AC∥BD,連結(jié)AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連結(jié)PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個角. (提示:有公共端點的兩條重合的射線所組成的角是0°)
1.當動點P落在第①部分時,有∠APB=∠PAC+∠PBD,請說明理由;
2.當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
3.當動點P在第③部分時,探究∠PAC、∠APB、∠PBD之間的關(guān)系,直接寫出你發(fā)現(xiàn)的結(jié)論.
如圖,直線AC∥BD,連結(jié)AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當動點P落在某個部分時,連結(jié)PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個角. (提示:有公共端點的兩條重合的射線所組成的角是0°)
【小題1】當動點P落在第①部分時,有∠APB=∠PAC+∠PBD,請說明理由;
【小題2】當動點P落在第②部分時,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?
【小題3】當動點P在第③部分時,探究∠PAC、∠APB、∠PBD之間的關(guān)系,直接寫出你發(fā)現(xiàn)的結(jié)論.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com