數(shù)列{an}(n∈N*)中,a1=a,an+1是函數(shù)fn(x)=x3(3an+n2)x2+3n2anx的極小值點(diǎn)

(Ⅰ)當(dāng)a=0時(shí),求通項(xiàng)an;

(Ⅱ)是否存在a,使數(shù)列{an}是等比數(shù)列?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an},{bn}滿足:a1=4,a2=
5
2
,an+1=
an+bn
2
,bn+1=
2anbn
an+bn
.?
(1)用an表示an+1;并證明:?n∈N+,an>2;?
(2)證明:{ln
an+2
an-2
}
是等比數(shù)列;?
(3)設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,當(dāng)n≥2時(shí),Sn2(n+
4
3
)
是否有確定的大小關(guān)系?若有,加以證明;若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求數(shù)列an=
n-1
2n
(n∈N*)
的前n項(xiàng)和Sn
(2)若Tn為數(shù)列{bn}的前n項(xiàng)和,且Tn=2bn+n2-3n-2,n∈N*,求bn
(3)在條件(2)下,設(shè)cn=
1
bn-n
,(n∈N*)
Mn為cn的前n項(xiàng)和,求證:Mn
37
44

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)Pn(an,bn)都在直線l:y=2x+2上,P1為直線l與x軸的交點(diǎn),數(shù)列{an}成等差數(shù)列,公差為1(n∈N*).
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若f(n)=
an(n=2m+1)
bn(n=2m)
(m∈Z),問是否存在k∈N*,使得f(k+5)=2f(k)-2成立?若存在,求出k的值,若不存在,說明理由;
(Ⅲ)求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}(n∈N +)中,a1=0,an+1是函數(shù)f(x)=
1
3
x3-
1
2
(3an+n2)x2+3n2anx
的極小值點(diǎn),則通項(xiàng)an=
(n-1)2,(n=1,2)
3•3n-3,(n≥3)
(n-1)2,(n=1,2)
3•3n-3,(n≥3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)已知{an}是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An,第n項(xiàng)之后各項(xiàng)an+1,an+2…的最小值記為Bn,dn=An-Bn
(Ⅰ)若{an}為2,1,4,3,2,1,4,3…,是一個(gè)周期為4的數(shù)列(即對(duì)任意n∈N*,an+4=an),寫出d1,d2,d3,d4的值;
(Ⅱ)設(shè)d是非負(fù)整數(shù),證明:dn=-d(n=1,2,3…)的充分必要條件為{an}是公差為d的等差數(shù)列;
(Ⅲ)證明:若a1=2,dn=1(n=1,2,3,…),則{an}的項(xiàng)只能是1或者2,且有無窮多項(xiàng)為1.

查看答案和解析>>

同步練習(xí)冊(cè)答案