【題目】完成下面的證明:如圖,點(diǎn)D,E,F分別是三角形ABC的邊BCCAAB上的點(diǎn),連接DE,DF,DEAB,∠BFD=∠CED,連接BEDF于點(diǎn)G,求證:∠EGF+∠AEG180°.

證明:∵DEAB(已知),

∴∠A=∠CED   

又∵∠BFD=∠CED(已知),

∴∠A=∠BFD   

DFAE   

∴∠EGF+∠AEG180°(   

【答案】兩直線平行,同位角相等;等量代換;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ).

【解析】

依據(jù)兩直線平行, 同位角相等以及等量代換, 即可得到∠A=BFD, 再根據(jù)同位角相等, 兩直線平行, 即可得出DF//AF, 進(jìn)而得出∠EGF+AEG=180°.

證明:∵DE∥AB(已知),

∴∠A=∠CED(兩直線平行,同位角相等)

∵∠BFD=∠CED(已知),

∴∠A=∠BFD(等量代換)

∴DF∥AE(同位角相等,兩直線平行)

∴∠EGF+∠AEG=180°(兩直線平行,同旁內(nèi)角互補(bǔ))

故答案為:兩直線平行,同位角相等;等量代換;同位角相等,兩直線平行;兩直線平行,同旁內(nèi)角互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解

如圖1,已知點(diǎn)A是BC外一點(diǎn),連接AB,AC,求∠BAC+∠B+∠C的度數(shù).

(1)閱讀并補(bǔ)充下面推理過(guò)程

解:過(guò)點(diǎn)A作ED∥BC

∴∠B=∠   ,∠C=∠   

又∵∠EAB+∠BAC+∠DAC=180°(平角定義)

∴∠B+∠BAC+∠C=180°

從上面的推理過(guò)程中,我們發(fā)現(xiàn)平行線具有“等角轉(zhuǎn)化”的功能,將∠BAC,∠B,∠C“湊”在一起,得出角之間的關(guān)系,使問(wèn)題得以解決

(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù).

小明受到啟發(fā),過(guò)點(diǎn)C作CF∥AB如圖所示,請(qǐng)你幫助小明完成解答:

(3)已知AB∥CD,點(diǎn)C在點(diǎn)D的右側(cè),∠ADC=70°.BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點(diǎn)E,點(diǎn)E在AB與CD兩條平行線之間.

①如圖3,點(diǎn)B在點(diǎn)A的左側(cè),若∠ABC=60°,則∠BED的度數(shù)為   °.

②如圖4,點(diǎn)B在點(diǎn)A的右側(cè),且AB<CD,AD<BC.若∠ABC=n°,則∠BED的度數(shù)為   °(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸、y軸分別交于點(diǎn)A(3,0)、B(0,3)兩點(diǎn).

(1)試求拋物線的解析式和直線AB的解析式;
(2)動(dòng)點(diǎn)E從O點(diǎn)沿OA方向以1個(gè)單位/秒的速度向終點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F沿AB方向以 個(gè)單位/秒的速度向終點(diǎn)B勻速運(yùn)動(dòng),E、F任意一點(diǎn)到達(dá)終點(diǎn)時(shí)另一個(gè)點(diǎn)停止運(yùn)動(dòng),連接EF,設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí)△AEF為直角三角形?
(3)拋物線位于第一象限的圖象上是否存在一點(diǎn)P,使△PAB面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)B、C在第一象限,且四邊形OABC是平行四邊形,OC=2 ,sin∠AOC= ,反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)C以及邊AB的中點(diǎn)D.
(1)求這個(gè)反比例函數(shù)的解析式;
(2)四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖所示,折疊矩形的一邊,使點(diǎn)落在邊的點(diǎn)處,如果.

(1)求FC的長(zhǎng);(2)求EC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),記定點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)O(0,0),A(2,4),請(qǐng)?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫圖.

(1)在圖1中畫一個(gè)整點(diǎn)三角形OAB,其中點(diǎn)B在第一象限,且點(diǎn)B的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);

(2)在圖2中畫一個(gè)整點(diǎn)三角形OAC,其中點(diǎn)C的坐標(biāo)為(3t,t),且點(diǎn)C的橫、縱坐標(biāo)之和是點(diǎn)A的縱坐標(biāo)的2倍.請(qǐng)直接寫出△OAC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=4,將△ABC繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)30°后得到△A1BC1 , 則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,DB=DC,∠C的度數(shù)比∠ABD的度數(shù)大54°,AE⊥BD于點(diǎn)E,則∠DAE的度數(shù)等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,EDC邊上一個(gè)動(dòng)點(diǎn),FAB邊上一點(diǎn),∠AEF=30°.設(shè)DE=x,圖中某條線段長(zhǎng)為y,yx滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的(  ).

A. 線段EC B. 線段AE C. 線段EF D. 線段BF

查看答案和解析>>

同步練習(xí)冊(cè)答案