【題目】移動(dòng)公司推出兩種話費(fèi)套餐,套餐一:每月收取月租34元后,送50分鐘的通話時(shí)間,超過(guò)50分鐘的部分每分鐘收費(fèi)0.2元,并約定每月最低消費(fèi)40元(當(dāng)月通話費(fèi)用不足40元,一律按40元收取);套餐二:每月沒(méi)有最低消費(fèi),但每分鐘均收取0.4元的通話費(fèi)用.若分別用y1,y2(單位:元)表示套餐一、套餐二的通話費(fèi)用,用x(單位:分鐘)表示每個(gè)月的通話時(shí)間.
(1)分別求出y1,y2關(guān)于x的函數(shù)表達(dá)式;
(2)在如圖所示的平面直角坐標(biāo)系中,畫(huà)出這兩個(gè)函數(shù)的圖象,并直接寫(xiě)出這兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo);
(3)①結(jié)合圖象,如何選擇話費(fèi)套餐才可使每月支付的通話費(fèi)用較少?
②若小亮的爸爸這個(gè)月的通話費(fèi)用是64元,求使用兩種套餐的通話時(shí)間相差多少分鐘.
【答案】(1)y1=,y2=0.4x(x≥0);(2) (120,48);(3)①選擇套餐一每月支付的通話費(fèi)用較少,②兩種套餐的通話時(shí)間相差40分鐘.(套餐一比套餐二的通話時(shí)間多40分鐘)
【解析】(1)根據(jù)兩種套餐的收費(fèi)標(biāo)準(zhǔn),列出函數(shù)關(guān)系式即可;
(2)利用描點(diǎn)法畫(huà)出圖象即可;
(3)①觀察圖象可知,當(dāng)x<120時(shí),y2<y1,選擇套餐二的通話費(fèi)用較少;當(dāng)x=120時(shí),y1=y2,落在套餐費(fèi)用一樣;當(dāng)x>120時(shí),y2>y1,選擇套餐一的通話費(fèi)用較少;
②由于64>60.當(dāng)y1=64時(shí),0.2x+24=64.解得x=200;當(dāng)y2=64時(shí),0.4x=64,解得x=160,兩種套餐的通話時(shí)間相差200﹣160=40(分鐘).
(1)40-34=6,6÷0.2=30,50+30=80(分鐘),y1=,y2=0.4x(x≥0);
(2)過(guò)點(diǎn)A(0,40),B(80,40)畫(huà)線段AB,且過(guò)B(80,40),P(120,48)畫(huà)射線BP,得到折線ABP就是函數(shù)y1的圖象;
過(guò)點(diǎn)O(0,0),點(diǎn)P(120,48)畫(huà)射線OP得到y2的圖象,兩個(gè)函數(shù)的交點(diǎn)P的坐標(biāo)(120,48);
(3)①觀察圖象可知,當(dāng)x<120時(shí),y2<y1,選擇套餐二的通話費(fèi)用較少;
當(dāng)x=120時(shí),y1=y2,落在套餐費(fèi)用一樣;
當(dāng)x>120時(shí),y2>y1,選擇套餐一的通話費(fèi)用較少;
②由于64>60.當(dāng)y1=64時(shí),0.2x+24=64.解得:x=200;
當(dāng)y2=64時(shí),0.4x=64,解得:x=160,兩種套餐的通話時(shí)間相差200﹣160=40(分鐘).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1經(jīng)過(guò)過(guò)點(diǎn)P(2,2),分別交x軸、y軸于點(diǎn)A(4,0),B。
(1)求直線l1的解析式;
(2)點(diǎn)C為x軸負(fù)半軸上一點(diǎn),過(guò)點(diǎn)C的直線l2:交線段AB于點(diǎn)D。
如圖1,當(dāng)點(diǎn)D恰與點(diǎn)P重合時(shí),點(diǎn)Q(t,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)Q作QM⊥x軸,分別交直線l1、l2于點(diǎn)M、N。若,MN=2MQ,求t的值;
如圖2,若BC=CD,試判斷m,n之間的數(shù)量關(guān)系并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,長(zhǎng)方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),長(zhǎng)方形OABC的面積為12,OC邊長(zhǎng)為3.
(1)數(shù)軸上點(diǎn)A表示的數(shù)為________.
(2)將長(zhǎng)方形OABC沿?cái)?shù)軸水平移動(dòng),移動(dòng)后的長(zhǎng)方形記為O′A′B′C′,移動(dòng)后的長(zhǎng)方形O′A′B′C′與原長(zhǎng)方形OABC重疊部分(如圖2中陰影部分)的面積記為S.
①當(dāng)S恰好等于原長(zhǎng)方形OABC面積的一半時(shí),數(shù)軸上點(diǎn)A′表示的數(shù)是多少?
②設(shè)點(diǎn)A的移動(dòng)距離AA′=x.
(ⅰ)當(dāng)S=4時(shí),求x的值;
(ⅱ)D為線段AA′的中點(diǎn),點(diǎn)E在線段OO′上,且OE=OO′,當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)D是等腰直角三角形ABC斜邊BC上一點(diǎn)(不與點(diǎn)B重合),連AD,線段AD繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°得到線段AE,連CE,求證:BD⊥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:、兩地相距,甲、乙兩車(chē)分別從、兩地同時(shí)出發(fā),甲速每小時(shí)千米,乙速每小時(shí)千米,請(qǐng)按下列要求列方程解題:
若同時(shí)出發(fā),相向而行,多少小時(shí)相遇?
若同時(shí)出發(fā),相向而行,多長(zhǎng)時(shí)間后兩車(chē)相距?
若同時(shí)出發(fā),同向而行,多長(zhǎng)時(shí)間后兩車(chē)相距?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( 。
A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AOB中,兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,將△AOB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到△A′O′B.若反比例函數(shù) 的圖像恰好經(jīng)過(guò)斜邊A′B的中點(diǎn)C,S△ABO=4,tan∠BAO=2,則k的值為( )
A.3
B.4
C.6
D.8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com