【題目】為弘揚(yáng)中華傳統(tǒng)文化,某校舉辦了學(xué)生“國學(xué)經(jīng)典大賽”,比賽項(xiàng)目為:A.唐詩;B.宋詞;C.元曲;D.論語.比賽形式分“單人組”和“雙人組”.

1)小明參加“單人組”,他從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,則抽到“唐詩”的是 事件,其概率是 ;

2)若小亮和小麗組成一個(gè)小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊(duì)員的比賽項(xiàng)目不能相同,且每人只能隨機(jī)抽取一次,則小亮和小麗都沒有抽到“元曲”的概率是多少?請用畫樹狀圖或列表的方法進(jìn)行說明.

【答案】1)隨機(jī),;(2.

【解析】

1)直接利用概率公式計(jì)算可得;
2)根據(jù)題意可直接先畫出列表或樹狀圖,根據(jù)圖可判斷12種結(jié)果中有6種結(jié)果可以使該事件發(fā)生,即可得概率.

解:(1)小明參加單人組,他從中隨機(jī)抽取一個(gè)比賽項(xiàng)目,則抽到唐詩的是隨機(jī)事件,從四個(gè)比賽項(xiàng)目中抽取1個(gè)有4種等可能結(jié)果,其中恰好抽中唐詩的只有1種結(jié)果,
∴恰好抽中唐詩的概率是

故答案為隨機(jī),;

2)用樹狀圖法表示是:

由樹狀圖可知,共有12種等可能的結(jié)果,其中都沒有抽到6種結(jié)果,

(沒有抽到的概率).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°AB=BC.點(diǎn)D是線段AB上的一點(diǎn),連結(jié)CD.過點(diǎn)BBGCD,分別交CDCA于點(diǎn)E、F,與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連結(jié)DF,給出以下四個(gè)結(jié)論:①;②若點(diǎn)DAB的中點(diǎn),則AFAB;③當(dāng)B、C、FD四點(diǎn)在同一個(gè)圓上時(shí),DF=DB;④若,則SABC9SBDF,其中正確的結(jié)論序號(hào)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),經(jīng)過點(diǎn)點(diǎn)軸上,直線軸交于點(diǎn)

1)求二次函數(shù)的解析式;

2)點(diǎn)是拋物線上的點(diǎn),過點(diǎn)軸的垂線與直線交于點(diǎn),求證:

3)當(dāng)時(shí)等邊三角形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙,丁四個(gè)人做“擊鼓傳花”游戲,游戲規(guī)則是:第一次由甲將花隨機(jī)傳給乙、丙、丁三人中的某一人中的某一人,以后的每一次傳花都是由接到花的人隨機(jī)傳給其他三人中的某一人.

1)甲第一次傳花時(shí),恰好傳給乙的概率是  ;

2)求經(jīng)過兩次傳花,花恰好回到甲手中的概率;

3)經(jīng)過三次傳花,花落在丙手上的概率記作P1,落在丁手上的概率記作P2,則P1  P2(填“>”、“<”或者“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與雙曲線交于兩點(diǎn),且點(diǎn)的坐標(biāo)為,將直線向上平移個(gè)單位,交雙曲線于點(diǎn),交軸于點(diǎn),且的面積是.給出以下結(jié)論:(1;(2)點(diǎn)的坐標(biāo)是;(3;(4.其中正確的結(jié)論有  

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD,∠EAF45°

1)如圖,當(dāng)點(diǎn)E、F分別在邊BC、CD上,連接EF,求證:EFBE+DF;

童威同學(xué)是這樣思考的,請你和他一起完成如下解答:證明:將ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得ABG,所以ADF≌△ABG

2)如圖,點(diǎn)M、N分別在邊AB、CD上,且BNDM.當(dāng)點(diǎn)E、F分別在BM、DN上,連接EF,探究三條線段EF、BEDF之間滿足的數(shù)量關(guān)系,并證明你的結(jié)論.

3)如圖,當(dāng)點(diǎn)E、F分別在對角線BD、邊CD上.若FC2,則BE的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一臺(tái)實(shí)物投影儀,圖2是它的示意圖,折線OABC表示支架,支架的一部分OAB是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AOOM,垂足為點(diǎn)O,且AO7cm,∠BAO160°,BCOMCD8cm

將圖2中的BC繞點(diǎn)B向下旋轉(zhuǎn)45°,使得BCD落在BCD′的位置(如圖3所示),此時(shí)CD′⊥OM,AD′∥OM,AD′=16cm,求點(diǎn)B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過原點(diǎn)的直線與反比例函數(shù)y=x>0)、反比例函數(shù)y=x>0)的圖象分別交于A、B兩點(diǎn),過點(diǎn)Ay軸的平行線交反比例函數(shù)y=x>0)的圖象于C點(diǎn),以AC為邊在直線AC的右側(cè)作正方形ACDE,點(diǎn)B恰好在邊DE上,則正方形ACDE的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在是直徑,點(diǎn)上一點(diǎn),點(diǎn)的中點(diǎn),過點(diǎn)的切線,與的延長線分別交于點(diǎn)、,連接.

(1)求證:.

(2)已知的半徑為2,當(dāng)為何值時(shí),,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案