【題目】已知關(guān)于x的方程x2+3x+q0的一個根為﹣3,則它的另一個根為_____q_____

【答案】0 0

【解析】

將﹣3代入方程中即可求出q的值,然后根據(jù)韋達(dá)定理可知:x1+x2=﹣3,從而求出方程的另一個根.

解:根據(jù)題意,得

99+q0,解得,q0;

由韋達(dá)定理,知

x1+x2=﹣3;

則﹣3+x2=﹣3,

解得,x20

故答案是:0,0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.A、B、C三點在格點上.

(1)作出△ABC關(guān)于x軸對稱的△A1B1C1 , 并寫出點C1的坐標(biāo);
(2)作出△ABC關(guān)于y對稱的△A2B2C2 , 并寫出點C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一組實數(shù), , , 1+ ,
(1)將它們分類,填在相應(yīng)的括號內(nèi):
有理數(shù){ … };
無理數(shù){ …};
(2)請你選出2個有理數(shù)和2個無理數(shù), 再用 “+,-,×,÷” 中的3種不同的運算符號將選出的4個數(shù)進(jìn)行運算(可以用括號), 使得運算的結(jié)果是一個正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC=60°,∠C=70°,求∠DAE、∠BOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題引入:

(1)如圖①,在△ABC中,點O是∠ABC和∠ACB平分線的交點,若∠A=α,則∠BOC= (用α表示);如圖②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,則∠BOC= (用α表示)

拓展研究:

(2)如圖③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請猜想∠BOC= (用α表示),并說明理由.

類比研究:

(3)BO、CO分別是△ABC的外角∠DBC、∠ECB的n等分線,它們交于點O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,請猜想∠BOC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在線段AB上,AC=6cm,MB=10cm,點M、N分別為AC、BC的中點.

(1)求線段BC的長;
(2)求線段MN的長;
(3)若C在線段AB延長線上,且滿足AC﹣BC=b cm,M,N分別是線段AC,BC的中點,你能猜想MN的長度嗎?請寫出你的結(jié)論(不需要說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上距離原點上的距離是2個單位長度的點表示的數(shù)是( )
A.2
B.2或-2
C.-2
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某人的錢包內(nèi)有10元錢、20元錢和50元錢的紙幣各1張,從中隨機(jī)取出2張紙幣.
(1)求取出紙幣的總額是30元的概率;
(2)求取出紙幣的總額可購買一件51元的商品的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果單項式x2ym+2xny的和仍然是一個單項式,則(m+n)2019等于( )

A. 1 B. 1 C. 2019 D. 2019

查看答案和解析>>

同步練習(xí)冊答案