【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,F(xiàn)為DC上一點(diǎn),且AB=FC,E為AD上一點(diǎn),EC交AF于點(diǎn)G,EA=EG. 求證:ED=EC.
【答案】解:證明:∵AB∥DC,F(xiàn)C=AB, ∴四邊形ABCF是平行四邊形.
∵∠B=90°,
∴四邊形ABCF是矩形.
∴∠AFC=90°,
∴∠D=90°﹣∠DAF,∠ECD=90°﹣∠CGF.
∵EA=EG,
∴∠EAG=∠EGA.
∵∠EGA=∠CGF,
∴∠DAF=∠CGF.
∴∠D=∠ECD.
∴ED=EC
【解析】先證明四邊形ABCF是平行四邊形.再證出四邊形ABCF是矩形.得出∠AFC=90°,得出∠D=90°﹣∠DAF,∠ECD=90°﹣∠CGF.由等腰三角形的性質(zhì)得出∠EAG=∠EGA.由對(duì)頂角相等得出∠DAF=∠CGF.證出∠D=∠ECD.即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明、小英、小麗和小華的家都在同一條街的同側(cè)居民住宅的一排住宅樓內(nèi)居住,四個(gè)家庭的住址位于同一直線(xiàn)上.小明家到小英家的距離約為480米,小麗家到小英家的距離約為320米,小華家在小明家和小麗家之間線(xiàn)段的中點(diǎn)的位置.
請(qǐng)你通過(guò)所學(xué)圖形知識(shí)建立數(shù)學(xué)模型,畫(huà)出圖形,求出小明家和小華家的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,AD是BC邊上的中線(xiàn),F是AD邊上的動(dòng)點(diǎn),E是AC邊上一點(diǎn).若AE=2,當(dāng)EF+CF取得最小值時(shí),∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長(zhǎng)AE交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
求證:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若P,Q為某個(gè)菱形相鄰的兩個(gè)頂點(diǎn),且該菱形的兩條對(duì)角線(xiàn)分別與x軸,y軸平行,則稱(chēng)該菱形為點(diǎn)P,Q的“相關(guān)菱形”.圖1為點(diǎn)P,Q的“相關(guān)菱形”的一個(gè)示意圖.
已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B的坐標(biāo)為(b,0),
(1)若b=3,則R(﹣1,0),S(5,4),T(6,4)中能夠成為點(diǎn)A,B的“相關(guān)菱形”頂點(diǎn)的是;
(2)若點(diǎn)A,B的“相關(guān)菱形”為正方形,求b的值;
(3)⊙B的半徑為 ,點(diǎn)C的坐標(biāo)為(2,4).若⊙B上存在點(diǎn)M,在線(xiàn)段AC上存在點(diǎn)N,使點(diǎn)M,N的“相關(guān)菱形”為正方形,請(qǐng)直接寫(xiě)出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)y=﹣3x+m與雙曲線(xiàn)y= 相交于點(diǎn)A(m,2).
(1)求雙曲線(xiàn)y= 的表達(dá)式;
(2)過(guò)動(dòng)點(diǎn)P(n,0)且垂直于x軸的直線(xiàn)與直線(xiàn)y=﹣3x+m及雙曲線(xiàn)y= 的交點(diǎn)分別為B和C,當(dāng)點(diǎn)B位于點(diǎn)C下方時(shí),求出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩支籃球隊(duì)進(jìn)行了5場(chǎng)比賽,比賽成績(jī)繪制成了統(tǒng)計(jì)圖(如圖)
(1)分別計(jì)算甲乙兩隊(duì)5場(chǎng)比賽成績(jī)的平均分.
(2)就這5場(chǎng)比賽,分別計(jì)算兩隊(duì)成績(jī)的極差;
(3)就這5場(chǎng)比賽,分別計(jì)算兩隊(duì)成績(jī)的方差;
(4)如果從兩隊(duì)中選派一支球隊(duì)參加籃球錦標(biāo)賽,根據(jù)上述統(tǒng)計(jì),從平均分、極差、方差以及獲勝場(chǎng)數(shù)這四個(gè)方面分別進(jìn)行簡(jiǎn)要分析,你認(rèn)為選派哪支球隊(duì)參賽更能取得好成績(jī)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=mx2﹣4mx+2m﹣1(m≠0)與平行于x軸的一條直線(xiàn)交于A,B兩點(diǎn).
(1)求拋物線(xiàn)的對(duì)稱(chēng)軸;
(2)如果點(diǎn)A的坐標(biāo)是(﹣1,﹣2),求點(diǎn)B的坐標(biāo);
(3)拋物線(xiàn)的對(duì)稱(chēng)軸交直線(xiàn)AB于點(diǎn)C,如果直線(xiàn)AB與y軸交點(diǎn)的縱坐標(biāo)為﹣1,且拋物線(xiàn)頂點(diǎn)D到點(diǎn)C的距離大于2,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線(xiàn),求∠A和∠CDB的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com