甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480km的目的地,乙車比甲車晚出發(fā)2h(從甲車出發(fā)時開始計時).圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(km)與時間x(h)之間的函數(shù)關系對應的圖象(線段AB表示甲車出發(fā)不足2h因故障停車檢修).請根據(jù)圖象所提供的信息,解決以下問題:
(1)求乙車所行路程y與時間x之間的函數(shù)關系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;
(3)乙車出發(fā)多長時間,兩車在途中第一次相遇.(寫出解題過程)

【答案】分析:(1)由圖可看出,乙車所行路程y與時間x的成一次函數(shù),使用待定系數(shù)法可求得一次函數(shù)關系式;
(2)由圖可得,交點F表示第二次相遇,F(xiàn)點橫坐標為6,代入(1)中的函數(shù)即可求得距出發(fā)地的路程;
(3)交點P表示第一次相遇,即甲車故障停車檢修時相遇,點P的橫坐標表示時間,縱坐標表示離出發(fā)地的距離,要求時間,則需要把點P的縱坐標先求出;從圖中看出,點P的縱坐標與點B的縱坐標相等,而點B在線段BC上,BC對應的函數(shù)關系可通過待定系數(shù)法求解,點B的橫坐標已知,則縱坐標可求.
解答:解:(1)設乙車所行路程y與時間x的函數(shù)關系式為y=k1x+b1,
把(2,0)和(10,480)代入,
,解得,
∴y與x的函數(shù)關系式為y=60x-120;

(2)由圖可得,交點F表示第二次相遇,
而F點橫坐標為6,此時y=60×6-120=240,
∴F點坐標為(6,240),
∴兩車在途中第二次相遇時,它們距出發(fā)地的路程為240千米;

(3)設線段BC對應的函數(shù)關系式為y=k2x+b2,
把(6,240)、(8,480)代入,

解得,
∴y與x的函數(shù)關系式為y=120x-480,
∴當x=4.5時,y=120×4.5-480=60.
∴點B的縱坐標為60,
∵AB表示因故停車檢修,
∴交點P的縱坐標為60,
把y=60代入y=60x-120中,
有60=60x-120,
解得x=3,
∴交點P的坐標為(3,60),
∵交點P表示第一次相遇,
∴乙車出發(fā)3-2=1小時,兩車在途中第一次相遇.
點評:本題意在考查學生利用待定系數(shù)法求解一次函數(shù)關系式,并利用關系式求值的運算技能和從坐標系中提取信息的能力,是道綜合性較強的代數(shù)應用題,對學生能力要求比較高.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480km的目的地,乙車比甲車晚出發(fā)2h(從甲車出發(fā)時開始計時).圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(km)與時間x(h)之間的函數(shù)關系對應的圖象(線段AB表示甲車出發(fā)不足2h因故障停車檢修).請根據(jù)圖象所提供的信息,解決以下問題:
(1)求乙車所行路程y與時間x之間的函數(shù)關系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;
(3)乙車出發(fā)多長時間,兩車在途中第一次相遇.(寫出解題過程)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•道里區(qū)一模)甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,甲出發(fā)不久因故停車檢修,修好后甲車繼續(xù)向前行駛.乙車比甲車晚出發(fā)(從甲車出發(fā)時開始計時).圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與時間x(小時)之間的函數(shù)關系對應的圖象.根據(jù)圖象中所提供的信息,有下列說法:①乙車比甲車晚2小時出發(fā);②甲車修好后行駛了1.5小時與乙車在途中第二次相遇;③乙車行駛的平均速度為每小時48千米;④甲、乙兩車到達目的地所用的時間相同.符合圖象描述的說法有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時,圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與實踐x(小時)之間的函數(shù)關系對應的圖象(線段AB表示甲因故障停車檢修).
(1)求乙車所行路程y與時間x的函數(shù)關系式.
(2)求駕車發(fā)生故障時,距出發(fā)點的路程是多少千米?
(3)若甲、乙兩車之間的距離不超過30千米時能保持聯(lián)絡暢通,求甲、乙兩車在兩次相遇之間能保持聯(lián)絡暢通時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

甲、乙兩輛汽車沿同一路線從A地前往B地,甲以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙在甲出發(fā)2小時后勻速前往B地,比甲早30分鐘到達.到達B地后,乙按原速度返回A地,甲以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(時),s與t之間的函數(shù)圖象如圖所示.
(1)求a的值.
(2)求甲車維修所用時間.
(3)求兩車在途中第二次相遇時t的值.
(4)當兩車相距40千米時,t的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年安徽省蕪湖市初中畢業(yè)學業(yè)考試模擬試卷數(shù)學卷 題型:解答題

(本小題滿分8分)甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(從甲車出發(fā)時開始計時).圖中折線、線段分別表示甲、乙兩車所行路程(千米)與時間(小時)之間的函數(shù)關系對應的圖象(線段表示甲出發(fā)不足2小時因故停車檢修).請根據(jù)圖象所提供的信息,解決如下問題:
(1)求乙車所行路程與時間的函數(shù)關系式;
(2)求兩車在途中第二次相遇時,它們距出發(fā)地的路程;
(3)乙車出發(fā)多長時間,兩車在途中第一次相遇?(寫出解題過程)

查看答案和解析>>

同步練習冊答案