【題目】如圖,已知原點(diǎn)O,A(0,4),B(2,0),將△OAB繞平面內(nèi)一點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°,使得旋轉(zhuǎn)后的三角形的兩個(gè)頂點(diǎn)恰好落在雙曲線 上,則旋轉(zhuǎn)中心P的坐標(biāo)為。

【答案】p(-,-)
【解析】解:根據(jù)題意可設(shè)A(x,-),
∴B(x+4,-),O(x+4,-)
∴-+2=-
=-6;=2
∵反比例函數(shù)x0
∴x=-6,
∴A(-6,1),B(-2,3),O(-2,1)
設(shè)P(x,y)
∴PO=PO,PB=PB
+=+;+=+
∴化簡(jiǎn)之后可得
解得:
∴P(- , -
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí),掌握①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的66網(wǎng)格中,A,B,C是格點(diǎn)(我們把組成網(wǎng)格的小正方形的頂點(diǎn),稱(chēng)為格點(diǎn)),其中點(diǎn)C在直線AB外。

(1)過(guò)A點(diǎn)畫(huà)AB的垂線AG;

(2)過(guò)C點(diǎn)畫(huà)AB的平行線CH;

(3)連接BC,線段BC與線段AB的關(guān)系:______________;

(4)_____________________是點(diǎn)C到直線AB的距離;

(5)因?yàn)橹本外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,垂線段最短,所以線段AC,BC的大小關(guān)系是______________(用“<”號(hào)連接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(題文)圖1是一個(gè)長(zhǎng)為2a,寬為2b的長(zhǎng)方形,沿圖中虛線剪開(kāi)分成四塊小長(zhǎng)方形,然后按圖2的形狀拼成一個(gè)正方形.

圖2的陰影部分的正方形的邊長(zhǎng)是______.

用兩種不同的方法求圖中陰影部分的面積.

(方法1)= ____________;

(方法2)= ____________;

(3) 觀察圖2,寫(xiě)出(a+b)2,(a-b)2,ab這三個(gè)代數(shù)式之間的等量關(guān)系;

根據(jù)題中的等量關(guān)系,解決問(wèn)題:若m+n=10,m-n=6,求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

如圖,在平面直角坐標(biāo)系中,若已知點(diǎn)A(xA,yA)和點(diǎn)C(xC,yC),點(diǎn)M為線段AC的中點(diǎn),利用三角形全等的知識(shí),有△AMP≌△CMQ,則有PM=MQ,PA=QC,即xM﹣xA=xC﹣xM,yA﹣yM=yM﹣yC,從而有,即中點(diǎn)M的坐標(biāo)為(,).

基本知識(shí):

(1)如圖,若A、C點(diǎn)的坐標(biāo)分別A(﹣1,3)、C(3,﹣1),求AC中點(diǎn)M的坐標(biāo);

方法提煉:

(2)如圖,在平面直角坐標(biāo)系中,ABCD的頂點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,5)、(﹣2,2)、(3,3),求點(diǎn)D的坐標(biāo);

(3)如圖,點(diǎn)A是反比例函數(shù)y=(x>0)上的動(dòng)點(diǎn),過(guò)點(diǎn)A作ABx軸,ACy軸,分別交函數(shù)y(x>0)的圖象于點(diǎn)B、C,點(diǎn)D是直線y=2x上的動(dòng)點(diǎn),請(qǐng)?zhí)剿髟邳c(diǎn)A運(yùn)動(dòng)過(guò)程中,以A、B、C、D為頂點(diǎn)的四邊形能否為平行四邊形,若能,求出此時(shí)點(diǎn)A的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,內(nèi)部有6個(gè)全等的正方形,小正方形的頂點(diǎn)E、F、G、H分
別在邊AD、AB、BC、CD上,則tan∠DEH=( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,BE平分∠ABC交CD邊于點(diǎn)E.點(diǎn)F在BC邊上,且FE⊥AE.

(1)如圖1,①∠BEC=_________°;

②在圖1已有的三角形中,找到一對(duì)全等的三角形,并證明你的結(jié)論;

(2)如圖2,F(xiàn)H∥CD交AD于點(diǎn)H,交BE于點(diǎn)M.NH∥BE,NB∥HE,連接NE.若AB=4,AH=2,求NE的長(zhǎng).

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始按A→B→C→D的方向運(yùn)動(dòng)到點(diǎn)D.如圖,設(shè)動(dòng)點(diǎn)P所經(jīng)過(guò)的路程為x,APD的面積為y.(當(dāng)點(diǎn)P與點(diǎn)AD重合時(shí),y=0)

(1)寫(xiě)出yx之間的函數(shù)解析式;

(2)畫(huà)出此函數(shù)的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將四邊形ABCD稱(chēng)為“基本圖形”,且各點(diǎn)的坐標(biāo)分別為A(4,4),B(1,3),C(3,3),D(3,1).
①畫(huà)出“基本圖形”關(guān)于原點(diǎn)O對(duì)稱(chēng)的四邊形A1B1C1D1 , 并填出A1 , B1 , C1 , D1的坐標(biāo);
②畫(huà)出“基本圖形”繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°所成的四邊形A2B2C2D2
A1 , )B1 ,
C1 , )D1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊BC,AB上的中點(diǎn),連接DE并延長(zhǎng)至點(diǎn)F,使EF=2DF,連接CE、AF.

(1)證明:AF=CE;

(2)當(dāng)∠B=30°時(shí),試判斷四邊形ACEF的形狀并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案