【題目】某運(yùn)動(dòng)隊(duì)欲從甲、乙兩名優(yōu)秀選手中選一名參加全省射擊比賽,該運(yùn)動(dòng)隊(duì)預(yù)先對(duì)這兩名選手進(jìn)行了8次測(cè)試,測(cè)得的成績(jī)?nèi)绫恚?/span>

次數(shù)

選手甲的成績(jī)(環(huán))

選手乙的成績(jī)(環(huán))

1

9.6

9.5

2

9.7

9.9

3

10.5

10.3

4

10.0

9.7

5

9.7

10.5

6

9.9

10.3

7

10.0

10.0

8

10.6

9.8

根據(jù)統(tǒng)計(jì)的測(cè)試成績(jī),請(qǐng)你運(yùn)用所學(xué)過(guò)的統(tǒng)計(jì)知識(shí)作出判斷,派哪一位選手參加比賽更好?為什么?

【答案】解:∵甲的平均數(shù)是: (9.6+9.7+…+10.6)=10,
乙的平均數(shù)是: (9.5+9.9+…+9.8)=10,
∴S2= [(9.6﹣10)2+(9.7﹣10)2+…+(10.6﹣10)2]=0.12,
S2= [(9.5﹣10)2+(9.9﹣10)2+…+(9.8﹣10)2]=0.1025,
∵S2>S2
∴派乙選手參加比賽更好.
【解析】先看平均數(shù),在平均數(shù)相差不大的情況下,看方差,方差小,波動(dòng)小,穩(wěn)定性好.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用平面去截一個(gè)六棱柱,截面的形狀最多是邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1y=(x-1)2+1與y軸交于點(diǎn)A,過(guò)點(diǎn)A與點(diǎn)(1,3)的直線與C1交于點(diǎn)B

(1) 求直線AB的函數(shù)表達(dá)式

(2) 如圖1,若點(diǎn)P為直線AB下方的C1上一點(diǎn),求點(diǎn)P到直線AB的距離的最大值

(3) 如圖2,將直線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后恰好經(jīng)過(guò)C1的頂點(diǎn)C,沿射線AC的方向平移拋物線C1得到拋物線C2,C2的頂點(diǎn)為D,兩拋物線相交于點(diǎn)E.設(shè)交點(diǎn)E的橫坐標(biāo)為m.若∠AED=90°,求m的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條開(kāi)口向下的拋物線的頂點(diǎn)坐標(biāo)是(2,3),則這條拋物線有(
A.最大值3
B.最小值3
C.最大值2
D.最小值﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于點(diǎn)D,經(jīng)過(guò)B、D兩點(diǎn)的⊙O交AB 于點(diǎn)E,交BC于點(diǎn)F,EB為⊙O的直徑.

(1)求證:AC是⊙O的切線;

(2)當(dāng)BC=2,cos∠ABC=時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C是以AB為直徑的半圓O上一點(diǎn),連結(jié)AC,BC,分別以AC,BC為邊向外作正方形ACDE,BCFG,DE,F(xiàn)G,弧AC,弧BC的中點(diǎn)分別是M,N,P,Q. 若MP+NQ=14,AC+BC=18,則AB的長(zhǎng)是【 】

A. B. C. 13 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知線段AB的兩個(gè)端點(diǎn)分別是A(4,﹣1),B(1,1)將線段AB平移后得到線段A′B′,若點(diǎn)A的坐標(biāo)為(﹣2,2),則點(diǎn)B′的坐標(biāo)為( )
A.(﹣5,4)
B.(4,3)
C.(﹣1,﹣2)
D.(﹣2,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x = 2是關(guān)于x的方程2x -a =1的解,則a的值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在Rt△ABC 中,∠C=90°,BC=3,AC=4.現(xiàn)在要將交ABC 擴(kuò)充成等腰三角形,且擴(kuò)充的部分是以AC為直角邊的直角三角形,求擴(kuò)充后等腰三角形的周長(zhǎng).

趙佳同學(xué)是這樣操作的:如圖 1 所示,延長(zhǎng)BC 到點(diǎn) D,使CD=BC,連接AD.所以,△ADB 為符合條件的三角形.則此時(shí)△ADB的周長(zhǎng)為____________

請(qǐng)你在圖2、圖3中再設(shè)計(jì)兩種擴(kuò)充方案,并直接寫(xiě)出擴(kuò)充后等腰三角形的周長(zhǎng).

圖2的周長(zhǎng):______________;圖3的周長(zhǎng):______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案