【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求證:△ACE≌△ACF;
(2)若AB=21,AD=9,AC=17,求CF的長(zhǎng).
【答案】(1)證明見(jiàn)解析(2)8
【解析】
(1)由角平分線的定義及所給條件利用AAS可證明△ACE≌△ACF;
(2)結(jié)合(1)中的全等可證明Rt△CDF≌Rt△CEB,可得DF=BE,再由AE-AF,可證得DF=BE,利用線段和差可求得BE、AE,在Rt△BCE中可求得CE,則可求得CF.
(1)證明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,
∴∠BAC=∠CAD, ∠AFC=∠AEC=90°
在△ACE和△ACF 中,
∵∠BAC=∠CAD, ∠AFC=∠AEC,AC=AC,
∴△ACE≌△ACF (AAS).
(2)由(1)知:∠AFC=∠AEC=90°,△ACE≌△ACF,
∴∠AFC=∠BEC=90°,CE=CF,AF=AE,
又∵CD=CB,
∴Rt△CDF≌Rt△CEB(HL),
∴DF=EB,
∴AD+DF=AF=AE=AB-EB,
∵AB=21,AD=9,
∴9+DF=21-EB,
∴EB=DF=6, AE=15,
在Rt△ACE中,
∴CF=CE=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,AB=10,BD=4,BE=2,點(diǎn)P從點(diǎn)E出發(fā)沿EA方向運(yùn)動(dòng),連結(jié)PD,以PD為邊,在PD的右側(cè)按如圖所示的方式作等邊△DPF,當(dāng)點(diǎn)P從點(diǎn)E運(yùn)動(dòng)到點(diǎn)A時(shí),點(diǎn)F運(yùn)動(dòng)的路徑長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】蜀山區(qū)植物園是一座三面環(huán)水的半島園區(qū),擁有梅園、桂花園、竹園、木蘭園、水景園等示范區(qū)。為了種植植物,需要從甲乙兩地向園區(qū)A,B兩個(gè)大棚配送營(yíng)養(yǎng)土,已知甲地可調(diào)出50噸營(yíng)養(yǎng)土,乙地可調(diào)出80噸營(yíng)養(yǎng)土,A棚需70噸營(yíng)養(yǎng)土,B棚需60噸營(yíng)養(yǎng)土,甲乙兩地運(yùn)往A,B兩棚的運(yùn)費(fèi)如下表所示(表中運(yùn)費(fèi)欄“元/噸”表示運(yùn)送每噸營(yíng)養(yǎng)土所需費(fèi)用)。
運(yùn)費(fèi)(元/噸) | ||
A | B | |
甲地 | 12 | 12 |
乙地 | 10 | 8 |
運(yùn)往A、B兩地的噸數(shù) | ||
A | B | |
甲地 | x | 50-x |
乙地 | ( ) | ( ) |
(1)設(shè)甲地運(yùn)往A棚營(yíng)養(yǎng)土x噸,請(qǐng)用關(guān)于x的代數(shù)式完成上表;
(2)設(shè)甲地運(yùn)往A棚營(yíng)養(yǎng)土x噸,求總運(yùn)費(fèi)y(元)關(guān)于x(噸)的函數(shù)關(guān)系式(要求寫(xiě)出變量取值范圍);
(3)當(dāng)甲、乙兩地各運(yùn)往A、B兩棚多少?lài)崰I(yíng)養(yǎng)土?xí)r,總運(yùn)費(fèi)最?最省的總運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在△ABC中,BE、CF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長(zhǎng)線上截取CG=AB,連接AD、AG.
(1)求證:AD=AG;
(2)AD與AG的位置關(guān)系如何,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2011貴州安順,10,3分)一只跳蚤在第一象限及x軸、y軸上跳動(dòng),在第一秒鐘,它從原點(diǎn)跳動(dòng)到(0,1),然后接著按圖中箭頭所示方向跳動(dòng)[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳動(dòng)一個(gè)單位,那么第35秒時(shí)跳蚤所在位置的坐標(biāo)是( )
A. (4,O) B. (5,0) C. (0,5) D. (5,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,∠B=90°AB∥DF,AB=3cm,BD=8cm,點(diǎn)C是線段BD上一動(dòng)點(diǎn),點(diǎn)E是直線DF上一動(dòng)點(diǎn),且始終保持AC⊥CE。
(1)試說(shuō)明:∠ACB =∠CED
(2)當(dāng)C為BD的中點(diǎn)時(shí), ABC與EDC全等嗎?若全等,請(qǐng)說(shuō)明理由;若不全等,請(qǐng)改變BD的長(zhǎng)(直接寫(xiě)出答案),使它們?nèi)取?/span>
(3)若AC=CE ,試求DE的長(zhǎng)
(4)在線段BD的延長(zhǎng)線上,是否存在點(diǎn)C,使得AC=CE,若存在,請(qǐng)求出DE的長(zhǎng)及△AEC的面積;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱(chēng)為這條拋物線的“拋物線三角形”.在拋物線y=ax2+bx+c中,系數(shù)a、b、c為絕對(duì)值不大于1的整數(shù),則該拋物線的“拋物線三角形”是等腰直角三角形的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(0,4),線段的位置如圖所示,其中點(diǎn)的坐標(biāo)為(,),點(diǎn)的坐標(biāo)為(3,).
(1)將線段平移得到線段,其中點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).
①點(diǎn)平移到點(diǎn)的過(guò)程可以是:先向 平移 個(gè)單位長(zhǎng)度,再向 平移 個(gè)單位長(zhǎng)度;
②點(diǎn)的坐標(biāo)為 .
(2)在(1)的條件下,若點(diǎn)的坐標(biāo)為(4,0),連接,畫(huà)出圖形并求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華剪了兩條寬為1的紙條,交叉疊放在一起,且它們較小的交角為60°,則它們重疊部分的面積為( )
A. 3 B. 2 C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com