【題目】武漢市某中學(xué)進行九年級理化實驗考查,有A和B兩個考查實驗,規(guī)定每位學(xué)生只參加一個實驗的考查,并由學(xué)生自己抽簽決定具體的考查實驗,小孟、小柯、小劉都要參加本次考查.
(1)用列表或畫樹狀圖的方法求小孟、小柯都參加實驗A考查的概率;
(2)他們?nèi)酥兄辽儆袃扇藚⒓訉嶒?/span>B的概率 (直接寫出結(jié)果).
【答案】(1);(2)
【解析】
(1)先畫出樹狀圖,得出所有等情況數(shù)和小孟、小柯都參加實驗A考查的情況數(shù),再根據(jù)概率公式即可得出答案;
(2)根據(jù)每人都有2種選法,得出共有8種等情況數(shù),他們?nèi)酥兄辽儆袃扇藚⒓訉嶒?/span>B的有4種,再根據(jù)概率公式即可得出答案.
解:(1)畫樹狀圖如圖所示:
∵兩人的參加實驗考查共有四種等可能結(jié)果,而兩人均參加實驗A考查有1種,
∴小孟、小柯都參加實驗A考查的概率為.
(2)共有8種等情況數(shù),他們?nèi)酥兄辽儆袃扇藚⒓訉嶒?/span>B的有4種,
所以他們?nèi)酥兄辽儆袃扇藚⒓訉嶒?/span>B的概率是.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是反比例函數(shù) y = (x>0 )的圖象上的一個動點,連接OA ,OB⊥OA,且OB =2OA.那么經(jīng)過點B的反比例函數(shù)的表達式為( )
A.y=-B.y= C.y=-D.y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖:如圖,AD為⊙O的直徑。
(1)求作:⊙O的內(nèi)接正六邊形ABCDEF.(要求:不寫作法,保留作圖痕跡);
(2)已知連接DF,⊙O的半徑為4,求DF的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負術(shù)和方程術(shù).這本書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.用現(xiàn)代白話文可以這樣理解:甲口袋中裝有黃金9枚(每枚黃金重量相同),乙口袋中裝有白銀11枚(每枚白銀重量相同),用稱分別稱這兩個口袋的重量,它們的重量相等.若從甲口袋中拿出1枚黃金放入乙口袋中,乙口袋中拿出1枚白銀放入甲口袋中,則甲口袋的重量比乙口袋的重量輕了13兩(袋子重量忽略不計).問一枚黃金和一枚白銀分別重多少兩?請根據(jù)題意列方程(組)解之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖顯示了用計算機模擬隨機拋擲一枚硬幣的某次實驗的結(jié)果
下面有三個推斷:
①當(dāng)拋擲次數(shù)是100時,計算機記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計“正面向上”的概率是0.5;
③若再次用計算機模擬此實驗,則當(dāng)拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45.
其中合理的是
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線與軸交于A,B兩點(A在B左邊),與軸交于C點,頂點為P,OC=2AO.
(1)求與滿足的關(guān)系式;
(2)直線AD//BC,與拋物線交于另一點D,△ADP的面積為,求的值;
(3)在(2)的條件下,過(1,-1)的直線與拋物線交于M、N兩點,分別過M、N且與拋物線僅有一個公共點的兩條直線交于點G,求OG長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有、兩個不透明的盒子,盒中裝有紅色、黃色、藍色卡片各1張,盒中裝有紅色、黃色卡片各1張,這些卡片除顏色外都相同.現(xiàn)分別從、兩個盒子中任意摸出一張卡片.
(1)從盒中摸出紅色卡片的概率為______;
(2)用畫樹狀圖或列表的方法,求摸出的兩張卡片中至少有一張紅色卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為△ABD外接圓上的一動點(點C不在上,且不與點B,D重合),∠ACB=∠ABD=45°.
(1)求證:BD是該外接圓的直徑;
(2)連結(jié)CD,求證:AC=BC+CD;
(3)若△ABC關(guān)于直線AB的對稱圖形為△ABM,連接DM,試探究,三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以O為原點的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y=(x>0)的圖象與AB相交于點D.與BC相交于點E,且BD=3,AD=6,△ODE的面積為15,若動點P在x軸上,則PD+PE的最小值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com