【題目】如圖,已知點A是反比例函數(shù) y = x>0 )的圖象上的一個動點,連接OA OBOA,且OB =2OA.那么經(jīng)過點B的反比例函數(shù)的表達式為(

A.y=-B.y= C.y=-D.y=

【答案】C

【解析】

AACy軸,BDy軸,可得∠ACO=BDO=90°,利用三角關系得到三角形相似,由相似得比例求出相似比,確定出面積比,求出三角形AOC面積,進而確定出三角形OBD面積,利用反比例函數(shù)k的幾何意義確定出所求k的值,即可確定出解析式.

AACy軸,BDy軸,可得∠ACO=BDO=90°,


∵∠AOC+OAC=90°,∠AOC+BOD=90°,
∴∠OAC=BOD,
∴△AOC∽△OBD,
OB=2OA
∴△AOC與△OBD相似比為12,
=14,
∵點A在反比例的圖象上,
∴△AOC面積為,
∴△OBD面積為2

經(jīng)過點B的反比例函數(shù)的表達式為,

,即
,

,
則經(jīng)過點B的反比例解析式為

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,ABAC,AD平分∠BAC,點GBA延長線上一點,點FAC上一點,AGAF,連接GF并延長交BCE

1)若∠B55°,求∠AFG的度數(shù);

2)求證:GEBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖隧道的截面由拋物線和長方形構成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y表示,且拋物線上的點COB的水平距離為3m,到地面OA的距離為m

1)求拋物線的函數(shù)關系式,并計算出拱頂D到地面OA的距離;

2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設雙向車道,那么這輛貨車能否安全通過?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,張大爺用32米長的籬笆圍成一個矩形菜園,菜園一邊靠墻(墻長為15米),平行于墻的一面開一扇寬度為2米的門,張大爺還在菜園內(nèi)開辟出一個小區(qū)域存放化肥,兩個區(qū)域用籬笆隔開,并有一扇2米的門相連(注:所有門都用其它材料).

1)設平行于墻的一邊長度為y米,垂直于墻的一邊長度為x米,直接寫出yx的函數(shù)關系式,并寫出自變量x的取值范圍;

2)設此時整個菜園的面積為Sm2(包括化肥存放處),則S的最大值為多少?

3)若此時整個菜園的面積不小于81m2(包括化肥存放處),結合圖象,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連結EF、EO,若DE=,DPA=45°.

(1)求⊙O的半徑;

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小強與小穎兩位同學在學習概率時,做拋骰子(均勻正方體形狀)試驗,共隨機拋了60次,出現(xiàn)向上點數(shù)的次數(shù)如下圖所示:

1)請補全下邊的統(tǒng)計圖;

2)小強說:如果拋600次,則出現(xiàn)向上點數(shù)為3的次數(shù)正好是100次.他的說法正確嗎?為什么?

3)若小強與小穎各隨機拋一枚骰子,求兩枚骰 子向上點數(shù)之和為3的倍數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y有最大值4,且圖象與x軸兩交點間的距離是8,對稱軸為x=﹣3,此二次函數(shù)的解析式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸于點A(﹣30)和點B,交y軸于點C0,3).

1)求拋物線的函數(shù)表達式;

2)若點P在拋物線上,且,求點P的坐標;

3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】武漢市某中學進行九年級理化實驗考查,有AB兩個考查實驗,規(guī)定每位學生只參加一個實驗的考查,并由學生自己抽簽決定具體的考查實驗,小孟、小柯、小劉都要參加本次考查.

1)用列表或畫樹狀圖的方法求小孟、小柯都參加實驗A考查的概率;

2)他們?nèi)酥兄辽儆袃扇藚⒓訉嶒?/span>B的概率   (直接寫出結果).

查看答案和解析>>

同步練習冊答案