【題目】如圖,已知點A是反比例函數(shù) y = (x>0 )的圖象上的一個動點,連接OA ,OB⊥OA,且OB =2OA.那么經(jīng)過點B的反比例函數(shù)的表達式為( )
A.y=-B.y= C.y=-D.y=
【答案】C
【解析】
過A作AC⊥y軸,BD⊥y軸,可得∠ACO=∠BDO=90°,利用三角關系得到三角形相似,由相似得比例求出相似比,確定出面積比,求出三角形AOC面積,進而確定出三角形OBD面積,利用反比例函數(shù)k的幾何意義確定出所求k的值,即可確定出解析式.
過A作AC⊥y軸,BD⊥y軸,可得∠ACO=∠BDO=90°,
∵∠AOC+∠OAC=90°,∠AOC+∠BOD=90°,
∴∠OAC=∠BOD,
∴△AOC∽△OBD,
∵OB=2OA,
∴△AOC與△OBD相似比為1:2,
∴: =1:4,
∵點A在反比例的圖象上,
∴△AOC面積為,
∴△OBD面積為2,
經(jīng)過點B的反比例函數(shù)的表達式為,
∴,即,
∵,
∴,
則經(jīng)過點B的反比例解析式為.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,AD平分∠BAC,點G是BA延長線上一點,點F是AC上一點,AG=AF,連接GF并延長交BC于E.
(1)若∠B=55°,求∠AFG的度數(shù);
(2)求證:GE⊥BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖隧道的截面由拋物線和長方形構成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y=表示,且拋物線上的點C到OB的水平距離為3m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設雙向車道,那么這輛貨車能否安全通過?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,張大爺用32米長的籬笆圍成一個矩形菜園,菜園一邊靠墻(墻長為15米),平行于墻的一面開一扇寬度為2米的門,張大爺還在菜園內(nèi)開辟出一個小區(qū)域存放化肥,兩個區(qū)域用籬笆隔開,并有一扇2米的門相連(注:所有門都用其它材料).
(1)設平行于墻的一邊長度為y米,垂直于墻的一邊長度為x米,直接寫出y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)設此時整個菜園的面積為Sm2(包括化肥存放處),則S的最大值為多少?
(3)若此時整個菜園的面積不小于81m2(包括化肥存放處),結合圖象,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連結EF、EO,若DE=,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小強與小穎兩位同學在學習“概率”時,做拋骰子(均勻正方體形狀)試驗,共隨機拋了60次,出現(xiàn)向上點數(shù)的次數(shù)如下圖所示:
(1)請補全下邊的統(tǒng)計圖;
(2)小強說:“如果拋600次,則出現(xiàn)向上點數(shù)為3的次數(shù)正好是100次.”他的說法正確嗎?為什么?
(3)若小強與小穎各隨機拋一枚骰子,求兩枚骰 子向上點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且,求點P的坐標;
(3)如圖b,設點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】武漢市某中學進行九年級理化實驗考查,有A和B兩個考查實驗,規(guī)定每位學生只參加一個實驗的考查,并由學生自己抽簽決定具體的考查實驗,小孟、小柯、小劉都要參加本次考查.
(1)用列表或畫樹狀圖的方法求小孟、小柯都參加實驗A考查的概率;
(2)他們?nèi)酥兄辽儆袃扇藚⒓訉嶒?/span>B的概率 (直接寫出結果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com