【題目】如圖,⊙O為△ABC的外接圓,AB=AC,直線MN與⊙O相切于點C,弦BDMN,ACBD相交于點E

(1)求證:△ABE ≌ △ACD

(2)若AB = 5,BC = 3,求AE

【答案】(1) 見解析;(2) AE =

【解析】分析:(1)在兩個三角形中,證明兩個三角形全等,找出三角形全等的條件,根據(jù)同弧所對的圓周角相等,根據(jù)所給的邊長相等,由邊角邊確定兩個三角形是全等三角形.
(2)可以證明得到對應邊成比例,設出要求的邊長,得到關于邊長的方程,解方程即可.

詳解:(1)連接OC,

∵直線MN與⊙O相切于點C,

OC MN,

BD MN,

OC BD,

=,

∴∠BAE =CAD,

ABEACD

∴△ABE ACD(ASA).

(2)由(1)知∠BAC = CAD = CBD,

,

,

CE = ,

AE =

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ABC,①BD平分∠ABC;②DE=DF;③∠ABC+EDF=180°,以①②③中的兩個作為條件,另一個作為結論,可以使結論成立的有幾個(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,AB=ACBDACD,CEABE,BD,CE相交于F.

求證:AF平分∠BAC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩同學只有一張乒乓球比賽的門票,誰都想去,最后商定通過轉盤游戲決定游戲規(guī)則是:轉動下面平均分成三個扇形且標有不同顏色的轉盤,轉盤連續(xù)轉動兩次若指針前后所指顏色相同則甲去;否則乙去.(如果指針恰好停在分割線上那么重轉一次,直到指針指向一種顏色為止

1轉盤連續(xù)轉動兩次,指針所指顏色共有幾種情況?通過畫樹狀圖或列表法加以說明;

2你認為這個游戲公平嗎?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABC中,AE、BF是角平分線,它們相交于點OAD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角坐標系中,已知A(1,0),以點A為圓心畫圓,點M(4,4)在⊙A上,直線y=﹣x+b過點M,分別交x軸、y軸于B、C兩點.

(1)①填空:⊙A的半徑為   ,b=   .(不需寫解答過程)

②判斷直線BC與⊙A的位置關系,并說明理由.

(2)若EF切⊙A于點F分別交ABBCG、E,且FEBC,求的值.

(3)若點P在⊙A上,點Qy軸上一點且在點C下方,當PQM為等腰直角三角形時,直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,n+1個邊長為2的等邊三角形有一條邊在同一直線上,設△B2D1C1面積為S1,B3D2C2面積為S2,…,Bn+1DnCn面積為Sn,則Sn等于( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊ABAC上,AD=AE,連接DC,點M,PN分別為DE,DC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關系是 ,位置關系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技進步,無人機的應用越來越廣,如圖1,在某一時刻,無人機上的探測器顯示,從無人機A處看一棟樓頂部B點的仰角和看與頂部B在同一鉛垂線上高樓的底部C的俯角.

(1)如果上述仰角與俯角分別為30°60°,且該樓的高度為30米,求該時刻無人機的豎直高度CD;

(2)如圖2,如果上述仰角與俯角分別為αβ,且該樓的高度為m米.求用α、β、m表示該時刻無人機的豎直高度CD.

查看答案和解析>>

同步練習冊答案