19.如圖,AB∥CD,AB=CD,∠A=∠C.你能得到哪些有關角、邊的結(jié)論?△ABF與△CDE全等嗎?

分析 由AB∥CD,根據(jù)平行線的性質(zhì),可證得∠B=∠D,然后利用ASA可判定△ABF與△CDE全等,則可證得對應角相等,對應邊相等.

解答 解:角:∠AFB=∠CED,∠AFD=∠CEB,邊:AF=CE,BF=DE,△ABF與△CDE全等.
理由:∵AB∥CD,
∴∠B=∠D,
在△ABF和△CDE中,
$\left\{\begin{array}{l}{∠A=∠C}\\{AB=CD}\\{∠B=∠D}\end{array}\right.$,
∴△ABF≌△CDE(ASA),
∴∠AFB=∠CED,AF=CE,BF=DE,
∴∠AFD=∠CEB.

點評 此題考查了全等三角形的判定與性質(zhì)以及平行線的性質(zhì).注意利用平行線的性質(zhì),證得角相等是解此題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

7.計算:
(1)$\sqrt{2}$sin45°+sin30°•cos60°;    
(2)$\sqrt{4}$+($\frac{1}{2}$)-1-2cos60°+(2-π)0
(3)$\sqrt{2}$+1-3tan230°+2$\sqrt{(sin45°-1)^{2}}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

8.若|x|=3,|y|=5,則|x+y|的值為2或8.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.已知,如圖△ABC中,CD⊥AB于D,BE⊥AC于E,若BD=CD,求證:BF=AC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.如圖,在△ABC中,AD為BC邊上的中線,若∠BAC<90°,作EA⊥AC,F(xiàn)A⊥BA,且AE=AC,AF=AB.連接EF,寫出AD與EF的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.如圖1,在平面直角坐標系中,O為坐標原點,矩形OABC的邊OA在x軸的負半軸上,A(-4,0)、B(-4,3),將矩形OABC繞點O按順時針方向旋轉(zhuǎn)α度得到矩形OA′B′C′.此時直線OA′,直線B′C′分別與直線BC相交于P、Q
(1)一條拋物線y=$\frac{{3-2\sqrt{3}}}{4}{x^2}$+bx+c,經(jīng)過B、C兩點,在四邊形OABC旋轉(zhuǎn)過程中,當0°≤α≤90°時,直線OA′與拋物線在直線BC上方的交點為M,旋轉(zhuǎn)角α多大時,△MBC面積達到最大?并求最大值,若點P在拋物線上,請直接寫出點P的坐標.
(2)當四邊形OA′B′C′的頂點B′落在y軸正半軸上時,求$\frac{BP}{BQ}$的值和sinα的值
(3)在四邊形OABC旋轉(zhuǎn)過程中,當0°≤α≤180°時,是否存在這樣的點P和Q,使BP=$\frac{1}{2}$BQ?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.如圖,四邊形OACB中,CM⊥OA,∠A+∠B=180°,OA+OB=2OM,CA=CB.求證:OC平分∠AOB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

8.已知(m-1)x|5m-4|=0是關于x的一元一次方程,那么m=$\frac{3}{5}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

9.若9x2+kxy+4y2是一個完全平方式,則k的值為( 。
A.6B.±6C.12D.±12

查看答案和解析>>

同步練習冊答案