【題目】小學我們已經知道三角形三個內角和是180°,對于如圖1中,,交于點,形成的兩個三角形中的角存在以下關系:①;②.試探究下面問題:
已知的平分線與的平分線交于點,
(1)如圖2,若,,,則_________;
(2)如圖3,若不平行,,,則_______.
(3)在總結前兩問的基礎上,借助圖3,探究與、之間是否存在某種等量關系?若存在,請說明理由;若不存在,請舉例說明.
【答案】(1)35°;(2)40°;(3)∠D+∠B=2∠E,理由見解析
【解析】
(1)(2)在△CDF和△AEF中,有:∠D+∠DCF= ∠E+∠DAE①;在△ABG和△CEG中, ∠B+∠EAB= ∠E+∠BCE②;①+②再結合的平分線與的平分線交于點,進行化簡得到∠E=(∠B+∠D),然后將∠B和∠D代入即可解答;
(3)根據(jù)(1)(2)的推導即可得到∠D+∠B=2∠E.
解:(1)如圖2在△CDF和△AEF中,有∠D+∠DCF= ∠E+∠DAE①
△ABG和△CEG中, 有∠B+∠EAB= ∠E+∠BCE②
①+②得:∠D+∠DCF+∠B+∠EAB=∠E+∠DAE+∠E+∠BCE
又∵的平分線與的平分線交于點
∴∠DCF=∠BCE,∠EAB=∠DAE
∴∠E=(∠B+∠D)
∵,
∴∠E=35°
(2)如圖3:同(1)可得∠E=(∠B+∠D)
∵,
∴∠E=40°
(3)解:∠D+∠B=2∠E.
理由如下:
在△CDF和△AEF中,有∠D+∠DCF= ∠E+∠DAE①
△ABG和△CEG中, 有∠B+∠EAB= ∠E+∠BCE②
①+②得:∠D+∠DCF+∠B+∠EAB=∠E+∠DAE+∠E+∠BCE
又∵的平分線與的平分線交于點
∴∠DCF=∠BCE,∠EAB=∠DAE
∴∠E=(∠B+∠D)
∴∠D+∠B=2∠E
科目:初中數(shù)學 來源: 題型:
【題目】湖南師大思沁新化實驗學校是一所“高起點,高質量”的集團化民辦名校,現(xiàn)有學生1000人(其中包括小學部和初中部),下學期計劃擴招學生1500人,這樣小學部人數(shù)增加了160%,初中部人數(shù)增加了135%,求擴招后該學校小學部和初中部各有多少名學生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD四個頂點都在⊙O上,點P是在弧AB上的一點,則∠CPD的度數(shù)是( )
A.35°
B.40°
C.45°
D.60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=24,tanC=2,如果將△ABC沿直線l翻折后,點B落在邊AC的中點E處,直線l與邊BC交于點D,那么BD的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個三角形,則S△ABO︰S△BCO︰S△CAO等于( )
A. 1︰1︰1
B. 1︰2︰3
C. 2︰3︰4
D. 3︰4︰5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=5,分別以OA、OC所在直線為x軸、y軸,建立平面直角坐標系,D是邊CB上的一個動點(不與C、B重合),反比例函數(shù)y= (k>0)的圖象經過點D且與邊BA交于點E,連接DE.
(1)連接OE,若△EOA的面積為3,則k=;
(2)是否存在點D,使得點B關于DE的對稱點在OC上?若存在,求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家規(guī)定“中小學生每天在校體育活動時間不低于1小時(h)”,某市就“你每天在校體育活動時間是多少?”的問題隨機調查了轄區(qū)內300名初中學生.根據(jù)調查結果繪制成的統(tǒng)計圖(部分)如圖所示,其中分組情況是:A組:t<0.5h;B組:0.5h≤t<1h;C組:1h≤t<1.5h;D組:t≥1.5h.
請根據(jù)上述信息解答下列問題
(1)補全條形統(tǒng)計圖;
(2)某市約有25000名初中學生,請你結合以上數(shù)據(jù)進行
①估計達到國家規(guī)定體育活動時間的人數(shù)是多少?
②如果要估算本市初中生每天在校體育活動時間是多少,你認為選擇眾數(shù)、中位數(shù)和平均數(shù)三個量中的哪個更合適?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察如圖所示的長方體.
(1)用符號表示下列兩棱的位置關系:AB___A′B′,AA′_____AB,D′A′_____D′C′,AD______BC.
(2) A′B′與BC所在的直線是兩條不相交的直線,它們_____平行線.(填“是”或“不是”)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com