【題目】如圖是某款籃球架的示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.26,sin75°≈0.97,tan75°≈3.73, ≈1.73)( )

A.3.04
B.3.05
C.3.06
D.4.40

【答案】B
【解析】解:延長FE交CB的延長線于M,過A作AG⊥FM于G,

在Rt△ABC中,tan∠ACB= ,
∴AB=BCtan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG= ,
∴sin60°= = ,
∴FG=2.17,
∴DM=FG+GM﹣DF≈3.05米.
答:籃框D到地面的距離是3.05米.
故答案為:B.
根據(jù)三角函數(shù)的定義,先求出GM=AB=BCtan75°的值,再求出FG=AF·sin∠FAG的值,得到DM=FG+GM﹣DF的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小明坐公交車到濱海公園游玩,他從家出發(fā)0.8小時(shí)后達(dá)到中心書城,逗留一段時(shí)間后繼續(xù)坐公交車到濱海公園,小明離家一段時(shí)間后,爸爸駕車沿相同的路線前往海濱公園. 如圖是他們離家路程s(km)與小明離家時(shí)間t(h)的關(guān)系圖,請根據(jù)圖回答下列問題:

(1)圖中自變量是____,因變量是______;

(2)小明家到濱海公園的路程為____ km,小明在中心書城逗留的時(shí)間為____ h;

(3)小明出發(fā)______小時(shí)后爸爸駕車出發(fā);

(4)圖中A點(diǎn)表示___________________________________;

(5)小明從中心書城到濱海公園的平均速度為______km/h,小明爸爸駕車的平均速度為______km/h;(補(bǔ)充;爸爸駕車經(jīng)過______追上小明);

(6)小明從家到中心書城時(shí),他離家路程s與坐車時(shí)間t之間的關(guān)系式為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C點(diǎn)在EF上,,BC平分,且.下列結(jié)論:

AC平分;②;③;④.其中結(jié)論正確的個(gè)數(shù)有(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在中,動(dòng)點(diǎn)邊上,以每秒的速度從點(diǎn)向點(diǎn)運(yùn)動(dòng).

1)如圖1,在運(yùn)動(dòng)過程中,若平分,且滿足,求的度數(shù).

2)如圖2,在(1)的條件下,連結(jié)并延長與的延長線交于點(diǎn),連結(jié),若,求的面積.

3)如圖3,另一動(dòng)點(diǎn)邊上,以每秒的速度從點(diǎn)出發(fā),在間往返運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí)停止運(yùn)動(dòng)(同時(shí)點(diǎn)也停止),若,求當(dāng)運(yùn)動(dòng)時(shí)間為多少秒時(shí),以D,四點(diǎn)組成的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)說明:DCAB;

(2)求∠PFH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)C與某建筑物底端B相距306米(點(diǎn)C與點(diǎn)B在同一水平面上),某同學(xué)從點(diǎn)C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測得該建筑物頂端A的俯角為20°,則建筑物AB的高度約為(精確到0.1米,參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )

A.29.1米
B.31.9米
C.45.9米
D.95.9米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)A在射線CE上,∠C=∠D

⑴如圖1,若ADBC,求證:BDAC

⑵如圖2,若∠BAC=∠BADBDBC,請?zhí)骄俊?/span>DAE與∠C的數(shù)量關(guān)系,寫出你的探究結(jié)論,并加以證明;

⑶如圖3,在⑵的條件下,過點(diǎn)DDFBC交射線于點(diǎn)F,當(dāng)∠DFE8DAE時(shí),求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),,點(diǎn)是三角形上任意一點(diǎn),三角形經(jīng)過平移后得到三角形,點(diǎn)的對(duì)應(yīng)點(diǎn)為.

1)直接寫出點(diǎn)的坐標(biāo)______________.

2)畫出三角形平移后的三角形.

3)在軸上是否存在一點(diǎn),使三角形的面積等于三角形面積的,若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 ,把不等式組的解集在數(shù)軸上表示出來,并求出不等式組的整數(shù)解的和.

查看答案和解析>>

同步練習(xí)冊答案