【題目】如圖拋物線y=x2+bx+c(c<0)與x軸交于A、B兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,且OB=OC=3,點(diǎn)E為線段BD上的一個(gè)動(dòng)點(diǎn),EF⊥x軸于F.
(1)求拋物線的解析式;
(2)是否存在點(diǎn)E,使△ECF為直角三角形?若存在,求點(diǎn)E的坐標(biāo);不存在,請(qǐng)說明理由;
(3)連接AC、BC,若點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)P運(yùn)動(dòng)到什么位置時(shí),∠PCB=∠ACO,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
【答案】(1)y=x2﹣2x﹣3;(2)存在,(,﹣3)或(3﹣3,6﹣12);(3)(,﹣)或(4,5)
【解析】
(1)易求得點(diǎn)B,C坐標(biāo),即可求得b、c的值,即可解題;
(2)易求得頂點(diǎn)D的坐標(biāo),即可求得直線BD的解析式,根據(jù)∠CEF=90°,即可求得點(diǎn)E縱坐標(biāo)為﹣3,即可解題;
(3)存在2種情況:①∠PCB=∠ACO,②∠P'CB=∠ACO,可分別求得tan∠PCE的值,即可求得直線PC斜率,即可求得直線PC于拋物線交點(diǎn)P坐標(biāo),即可解題.
解:(1)∵OB=OC=3,
∴點(diǎn)B坐標(biāo)為(3,0),點(diǎn)C坐標(biāo)為(0,﹣3),
∵拋物線y=x2+bx+c經(jīng)過點(diǎn)B,C,∴,
解得:c=﹣3,b=﹣2,
∴拋物線的解析式為y=x2﹣2x﹣3;
(2)∵拋物線的解析式為y=x2﹣2x﹣3,
∴點(diǎn)D坐標(biāo)為(1,﹣4),
∵直線BD經(jīng)過點(diǎn)B,D,設(shè)直線BD解析式為y=kx+b,
則,
解得:k=2,b=﹣6,
∴直線BD解析式為y=2x﹣6,
∵△ECF為直角三角形,
當(dāng)∠CEF=90°時(shí),E點(diǎn)縱坐標(biāo)和等于C點(diǎn)縱坐標(biāo),
∴點(diǎn)E縱坐標(biāo)為﹣3,
∴點(diǎn)E橫坐標(biāo)為,
∴點(diǎn)E坐標(biāo)為(,﹣3);
當(dāng)∠FCE=90°時(shí),
∵EF⊥x軸,所以易得△CFO∽FEC,
∴,即EFOC=CF2,=OF2+OC2,
設(shè)OF=m,因此F的坐標(biāo)為(m,0)代入直線BD的方程y=2x﹣6得E的坐標(biāo)為(m,2m﹣6),
∴EF=6﹣2m,
∴(6﹣2m)×3=m2+9,解得m=3﹣3(負(fù)值舍去),
∴點(diǎn)E的坐標(biāo)為(3﹣3,6﹣12)
綜上可得存在這樣的點(diǎn)E,E點(diǎn)的坐標(biāo)為(,﹣3)或(3﹣3,6﹣12).
(3)存在2種情況:
①∠PCB=∠ACO,
∵∠BCE=45°,
∴tan∠BCE=1,
∵tan∠ACO=,
∴tan∠PCB=,
∴tan∠PCE=tan(∠BCE﹣∠PCB)=,
∵直線PC經(jīng)過點(diǎn)P,
∴直線PC解析式為:y=x﹣3,
∴點(diǎn)P坐標(biāo)為:(,﹣),
②∠P'CB=∠ACO,
∵∠BCE=45°,
∴tan∠BCE=1,
∵tan∠ACO=,
∴tan∠P'CB=,
∴tan∠P'CE=tan(∠BCE﹣∠P'CB)=,
∵直線PC經(jīng)過點(diǎn)P,
∴直線PC解析式為:y=2x﹣3,
∴點(diǎn)P坐標(biāo)為:(4,5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點(diǎn),現(xiàn)將拋物線沿軸翻折,并向左平移1個(gè)單位長(zhǎng)度后得到物線.
(1)求拋物線的解析式.
(2)若拋物線與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)右側(cè)),點(diǎn)在拋物線對(duì)稱軸上一點(diǎn),為坐標(biāo)原點(diǎn),則拋物線上是否存在點(diǎn),使以,,,為頂點(diǎn)的四邊形是干行四邊形?若存在,求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象與軸交于點(diǎn)、,與軸交于點(diǎn),直線經(jīng)過點(diǎn)、.
(1)求拋物線的表達(dá)式;
(2)過點(diǎn)的直線交拋物線于點(diǎn),交直線于點(diǎn),連接,當(dāng)直線平分的面積時(shí),求點(diǎn)的坐標(biāo);
(3)如圖所示,把拋物線位于軸上方的圖象沿軸翻折,當(dāng)直線與翻折后的整個(gè)圖象只有三個(gè)交點(diǎn)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是將菱形ABCD以點(diǎn)O為中心按順時(shí)針方向分別旋轉(zhuǎn)90°,180°,270°后形成的圖形.若∠BAD=60°,AB=2,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為迎接縣中學(xué)生籃球比賽,計(jì)劃購(gòu)買A、B兩種籃球共20個(gè)供學(xué)生訓(xùn)練使用.若購(gòu)買A種籃球6個(gè),則購(gòu)買兩種籃球共需費(fèi)用720元;若購(gòu)買A種籃球12個(gè),則購(gòu)實(shí)兩種籃球共需費(fèi)用840元.
(1)A、B兩種籃球共需單價(jià)各多少元?
(2)設(shè)購(gòu)買A種籃球x個(gè)且A種籃球不少于8個(gè),所需費(fèi)用為y元,試確定y與x的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為全面推進(jìn)“三供一業(yè)”分離移交工作,甲、乙兩個(gè)工程隊(duì)承攬了某社區(qū)2400米的電路管道鋪設(shè)工程.已知甲隊(duì)每天鋪設(shè)管道的長(zhǎng)度是乙隊(duì)每天鋪設(shè)管道長(zhǎng)度的1.5倍,若兩隊(duì)各自獨(dú)立完成1200米的鋪設(shè)任務(wù),則甲隊(duì)比乙隊(duì)少用10天.
(1)求甲、乙兩工程隊(duì)每天分別鋪設(shè)電路管道多少米;
(2)若甲隊(duì)參與該項(xiàng)工程的施工時(shí)間不得超過20天,則乙隊(duì)至少施工多少天才能完成該項(xiàng)工程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:甲、乙兩地相距,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,線段和折線分別表示貨車和轎車離甲地的距離與貨車出發(fā)時(shí)間之間的函數(shù)關(guān)系,請(qǐng)根據(jù)圖象解答下列問題:
(1)貨車的速度為___________,當(dāng)轎車到達(dá)乙地后,貨車距乙地的距離為____________千米;
(2)求轎車改變速度后與的函數(shù)關(guān)系式;
(3)轎車到達(dá)乙地后,馬上沿原路以段速度返回,求轎車從乙地出發(fā)后多長(zhǎng)時(shí)間再次與貨車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的邊長(zhǎng)為2,∠AOC=60°,點(diǎn)D為AB邊上的一點(diǎn),經(jīng)過O,A,D三點(diǎn)的拋物線與x軸的正半軸交于點(diǎn)E,連結(jié)AE交BC于點(diǎn)F,當(dāng)DF⊥AB時(shí),CE的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過□的頂點(diǎn),若點(diǎn)的坐標(biāo)分別為,,點(diǎn)的橫坐標(biāo)和縱坐標(biāo)之和為,則的值為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com