【題目】如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4米時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2米,水面下降1米時(shí),水面的寬度增加了________米.

【答案】

【解析】

建立平面直角坐標(biāo)系,設(shè)頂點(diǎn)式,代入點(diǎn)坐標(biāo)解出拋物線解析式,把代入拋物線解析式求得,即可得出水面的寬度增加的距離.

解:建立平面直角坐標(biāo)系,設(shè)橫軸通過,縱軸通過中點(diǎn)且通過點(diǎn),則通過畫圖可得知為原點(diǎn),

拋物線以軸為對(duì)稱軸,且經(jīng)過兩點(diǎn),可求出為的一半2米,拋物線頂點(diǎn)坐標(biāo)為,

設(shè)頂點(diǎn)式,代入點(diǎn)坐標(biāo),

得出:

所以拋物線解析式為,

當(dāng)水面下降1米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:

當(dāng)時(shí),對(duì)應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線與拋物線相交的兩點(diǎn)之間的距離,

可以通過把代入拋物線解析式得出:

解得:,

所以水面寬度增加了米.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的頂點(diǎn)Cy軸正半軸上,CD平行于x軸,直線ACx軸于點(diǎn)E,BCAC,連接BE,反比例函數(shù) (x0)的圖象經(jīng)過點(diǎn)D.已知SBCE=1,則k=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=的圖象交于AB兩點(diǎn),其中A點(diǎn)坐標(biāo)為(2,3).

1)求兩個(gè)函數(shù)的表達(dá)式;

2)點(diǎn)Py軸上的一個(gè)動(dòng)點(diǎn),當(dāng)APB為直角時(shí),求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn).

1)求反比例函數(shù)的解析式;

2)將直線向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn),與軸交于點(diǎn),且的面積為,求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角三角形ABC中,BC,∠ABC45°,BD平分∠ABC,M、N分別是BDBC上的動(dòng)點(diǎn),則CM+MN的最小值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某車間準(zhǔn)備采取每月任務(wù)定額,超產(chǎn)有獎(jiǎng)的措施提高工作效率,為制定一個(gè)恰當(dāng)?shù)纳a(chǎn)定額,從該車間200名工人中隨機(jī)抽取20人統(tǒng)計(jì)其某月產(chǎn)量如下:

每人生產(chǎn)零件數(shù)

260

270

280

290

300

310

350

520

數(shù)

1

1

5

4

3

4

1

1

1)請(qǐng)應(yīng)用所學(xué)的統(tǒng)計(jì)知識(shí).為制定生產(chǎn)定額的管理者提供有用的參考數(shù)據(jù);

2)你認(rèn)為管理者將每月每人的生產(chǎn)定額定為多少最合適?為什么?

3)估計(jì)該車間全年可生產(chǎn)零件多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線yax2+bx+c的頂點(diǎn)為B(1,3),與x軸的交點(diǎn)A在點(diǎn)(3,0)(2,0)之間,以下結(jié)論:①b24ac0;②a+b+c0;③2ab0;④ca3;其中正確的有( )個(gè).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,BAC=90°,AB=1,tanC=,以點(diǎn)A為圓心,AB長(zhǎng)為半徑作弧交ACD,分別以B、D為圓心,以大于BD長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,射線AEBCF,過點(diǎn)FFGACG,則FG的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】風(fēng)箏又稱紙鳶鳶兒,放風(fēng)箏是民間傳統(tǒng)游戲之一,也是清明時(shí)節(jié)人們所喜愛的活動(dòng).小李打算抓住這一機(jī)遇,以每個(gè)20元的成本制作了30個(gè)風(fēng)箏,再以每個(gè)40元的價(jià)格售出,很快就被一搶而空,于是小李計(jì)劃加緊制作第二批風(fēng)箏.

(1)預(yù)計(jì)第二批風(fēng)箏的成本是每個(gè)15元,仍以原價(jià)出售,若兩批風(fēng)箏的總利潤(rùn)不低于2850元,則第二批至少應(yīng)該制作多少個(gè)風(fēng)箏?

(2)在實(shí)際制作過程中,小李按照(1)中風(fēng)箏的最低數(shù)量進(jìn)行制作,但制作風(fēng)箏的成本比預(yù)期的15元多了a%(a10),于是小李決定將售價(jià)也提高a%,附近的商戶受到小李的啟發(fā),也紛紛賣起了風(fēng)箏,在市場(chǎng)沖擊下,小李實(shí)際還剩下a%的風(fēng)箏沒賣出去,但仍然比第一次獲利多1668元,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案