【題目】如圖是一個(gè)橫斷面為拋物線形狀的拱橋,當(dāng)水面寬4米時(shí),拱頂(拱橋洞的最高點(diǎn))離水面2米,水面下降1米時(shí),水面的寬度增加了________米.
【答案】
【解析】
建立平面直角坐標(biāo)系,設(shè)頂點(diǎn)式,代入點(diǎn)坐標(biāo)解出拋物線解析式,把代入拋物線解析式求得,即可得出水面的寬度增加的距離.
解:建立平面直角坐標(biāo)系,設(shè)橫軸通過,縱軸通過中點(diǎn)且通過點(diǎn),則通過畫圖可得知為原點(diǎn),
拋物線以軸為對(duì)稱軸,且經(jīng)過兩點(diǎn),和可求出為的一半2米,拋物線頂點(diǎn)坐標(biāo)為,
設(shè)頂點(diǎn)式,代入點(diǎn)坐標(biāo),
得出:,
所以拋物線解析式為,
當(dāng)水面下降1米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)時(shí),對(duì)應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線與拋物線相交的兩點(diǎn)之間的距離,
可以通過把代入拋物線解析式得出:,
解得:,
所以水面寬度增加了米.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的頂點(diǎn)C在y軸正半軸上,CD平行于x軸,直線AC交x軸于點(diǎn)E,BC⊥AC,連接BE,反比例函數(shù) (x>0)的圖象經(jīng)過點(diǎn)D.已知S△BCE=1,則k=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(2,3).
(1)求兩個(gè)函數(shù)的表達(dá)式;
(2)點(diǎn)P是y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)∠APB為直角時(shí),求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)將直線向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn),與軸交于點(diǎn),且的面積為,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角三角形ABC中,BC=,∠ABC=45°,BD平分∠ABC,M、N分別是BD、BC上的動(dòng)點(diǎn),則CM+MN的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間準(zhǔn)備采取每月任務(wù)定額,超產(chǎn)有獎(jiǎng)的措施提高工作效率,為制定一個(gè)恰當(dāng)?shù)纳a(chǎn)定額,從該車間200名工人中隨機(jī)抽取20人統(tǒng)計(jì)其某月產(chǎn)量如下:
每人生產(chǎn)零件數(shù) | 260 | 270 | 280 | 290 | 300 | 310 | 350 | 520 |
人 數(shù) | 1 | 1 | 5 | 4 | 3 | 4 | 1 | 1 |
(1)請(qǐng)應(yīng)用所學(xué)的統(tǒng)計(jì)知識(shí).為制定生產(chǎn)定額的管理者提供有用的參考數(shù)據(jù);
(2)你認(rèn)為管理者將每月每人的生產(chǎn)定額定為多少最合適?為什么?
(3)估計(jì)該車間全年可生產(chǎn)零件多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c的頂點(diǎn)為B(﹣1,3),與x軸的交點(diǎn)A在點(diǎn)(﹣3,0)和(2,0)之間,以下結(jié)論:①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3;其中正確的有( )個(gè).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以點(diǎn)A為圓心,AB長(zhǎng)為半徑作弧交AC于D,分別以B、D為圓心,以大于BD長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,射線AE與BC于F,過點(diǎn)F作FG⊥AC于G,則FG的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】風(fēng)箏又稱“紙鳶”、“鳶兒”,放風(fēng)箏是民間傳統(tǒng)游戲之一,也是清明時(shí)節(jié)人們所喜愛的活動(dòng).小李打算抓住這一機(jī)遇,以每個(gè)20元的成本制作了30個(gè)風(fēng)箏,再以每個(gè)40元的價(jià)格售出,很快就被一搶而空,于是小李計(jì)劃加緊制作第二批風(fēng)箏.
(1)預(yù)計(jì)第二批風(fēng)箏的成本是每個(gè)15元,仍以原價(jià)出售,若兩批風(fēng)箏的總利潤(rùn)不低于2850元,則第二批至少應(yīng)該制作多少個(gè)風(fēng)箏?
(2)在實(shí)際制作過程中,小李按照(1)中風(fēng)箏的最低數(shù)量進(jìn)行制作,但制作風(fēng)箏的成本比預(yù)期的15元多了a%(a>10),于是小李決定將售價(jià)也提高a%,附近的商戶受到小李的啟發(fā),也紛紛賣起了風(fēng)箏,在市場(chǎng)沖擊下,小李實(shí)際還剩下a%的風(fēng)箏沒賣出去,但仍然比第一次獲利多1668元,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com