【題目】已知二次函數(shù).
(Ⅰ)已知,若二次函數(shù)圖象與軸有唯一公共點,求的值;
(Ⅱ)已知.
(ⅰ)當(dāng)時,二次函數(shù)圖象與軸有且只有一個公共點,求的取值范圍;
(ⅱ)當(dāng)時,有最小值,求的值.
【答案】(Ⅰ);(Ⅱ)(ⅰ)b的取值范圍<b≤或1≤b<3;(ⅱ)b的值為或.
【解析】
(Ⅰ)先根據(jù)化簡二次函數(shù)的解析式,再根據(jù)判別式△=即可得出b的值
(Ⅱ)(ⅰ)先根據(jù)已知條件得出方程的兩個根,,再由即可得出b的取值范圍;
(ⅱ)先根據(jù)已知條件得出拋物線的解析式和對稱軸x=,再根據(jù)對稱軸和、以及y的最小值分三種情況進(jìn)行討論即可
(Ⅰ)當(dāng)a=c=1,拋物線;且與x軸有唯一公共點.
對于方程,判別式△=,有.
(Ⅱ)(ⅰ)當(dāng)時,∵;
∴,;
當(dāng)<<1時,<≤1,解得≤b<3;
當(dāng)<<1時,≤<1,解得<b≤1;
∵拋物線與x軸有且只有一個公共點,
∴b的取值范圍<b≤或1≤b<3;
(ⅱ)當(dāng)時,,拋物線;
圖象開口向上,對稱軸為直線x=,
①當(dāng)b≤≤b+3時,即﹣2≤b≤0,∴當(dāng)x=時,;
②當(dāng)<b,即b>0時,在自變量x的值滿足b≤x≤b+3的情況下,y隨x的增大而增大,
∴當(dāng)x=b時,為最小值,
∴,解得,<0(舍去),;
③當(dāng)>b+3,即b<﹣2,在自變量x的值滿足b≤x≤+3的情況下,y隨x的增大而減小,
∴當(dāng)x=b+3時,為最小值,
∴.解得,>﹣2(舍去),;
綜上所述:b的值為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點E是正方形ABCD中邊AB的中點.
(1)如圖1,點T為線段DE上一點,連接BT并延長交AD于點M,連接AT并延長交CD于點N,且AM=DN.試判斷線段AN與線段BM的關(guān)系,并證明;求證:點M是線段AD的黃金分割點.
(2)如圖2,在AD邊上取一點M,滿足AM2=DMDA時,連接BM交DE于點T,連接AT并延長交DC于點N,求tan∠MTD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點D在邊AB上.
(1)如圖1,當(dāng)點E在邊BC上時,求證DE=EB;
(2)如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋中有大小形狀和質(zhì)地等完全相同的個小球,它們分別標(biāo)有數(shù)字,從袋中任意摸出一小球(不放回),將袋中的小球攪勻后,再從袋中摸出另一小球.
(1)請你用列表或畫樹狀圖的方法表示摸出小球上的數(shù)字可能出現(xiàn)的所有結(jié)果;
(2)規(guī)定:如果摸出的兩個小球上的數(shù)字都是方程的根,則小明贏;如果摸出的兩個小球上的數(shù)字都不是方程的根,則小亮贏.你認(rèn)為這個游戲規(guī)則對小明、小亮雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與坐標(biāo)軸分別交于,,三點,連接,.
(1)直接寫出,,三點的坐標(biāo);
(2)點是線段上一點(不與,重合),過點作軸的垂線交拋物線于點,連接.若點關(guān)于直線的對稱點恰好在軸上,求出點的坐標(biāo);
(3)在平面內(nèi)是否存在一點,使關(guān)于點的對稱(點,,分別是點,,的對稱點)恰好有兩個頂點落在該拋物線上?若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為( )
A. 6B. 8
C. 10D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教育部基礎(chǔ)教育司負(fù)責(zé)人解讀“2020新中考”時強調(diào)要注重學(xué)生分析與解決問題的能力,要增強學(xué)生的創(chuàng)新精神和綜合素質(zhì).王老師想嘗試改變教學(xué)方法,將以往教會學(xué)生做題改為引導(dǎo)學(xué)生會學(xué)習(xí).于是她在菱形的學(xué)習(xí)中,引導(dǎo)同學(xué)們解決菱形中的一個問題時,采用了以下過程(請解決王老師提出的問題):
先出示問題(1):如圖1,在等邊三角形中,為上一點,為上一點,如果,連接、,、相交于點,求的度數(shù).
通過學(xué)習(xí),王老師請同學(xué)們說說自己的收獲.小明說發(fā)現(xiàn)一個結(jié)論:在這個等邊三角形中,只要滿足,則的度數(shù)就是一個定值,不會發(fā)生改變.緊接著王老師出示了問題(2):如圖2,在菱形中,,為上一點,為上一點,,連接、,、相交于點,如果,,求出菱形的邊長.
問題(3):通過以上的學(xué)習(xí)請寫出你得到的啟示(一條即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點B的坐標(biāo)為,過點B分別作x軸、y軸垂線,垂足分別是C,A,反比例函數(shù)的圖象交AB,BC分別于點E,F.
(1)求直線EF的解析式.
(2)求四邊形BEOF的面積.
(3)若點P在y軸上,且是等腰三角形,請直接寫出點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com