【題目】如圖,在6×8的網(wǎng)格紙中,每個(gè)小正方形的邊長都為1,動點(diǎn)PQ分別從點(diǎn)D、A同時(shí)出發(fā)向右移動,點(diǎn)P的運(yùn)動速度為每秒2個(gè)單位,點(diǎn)Q的運(yùn)動速度為每秒1個(gè)單位,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)C時(shí),兩個(gè)點(diǎn)都停止運(yùn)動.運(yùn)動時(shí)間t _______秒時(shí),PQB成為以PQ為腰的等腰三角形.

【答案】

【解析】

QSFES, PQB是以PQ為腰的等腰三角形分以下兩種情況分別求解,①當(dāng)PB=PQ時(shí),由;②當(dāng)QB=QP時(shí),

QB=8-t,求解即可

解:如圖:作QSFES

由題意得:PD=2tAQ=t,則PS=2t-t=t

Rt△PSQ中,,

①當(dāng)PB=PQ時(shí),;

解得:t=8(舍去)

②當(dāng)QB=QP時(shí),

解得:t=

故運(yùn)動時(shí)間為秒時(shí),△PQB是以PQ為腰的等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑為AB,點(diǎn)C在圓周上(異于A,B),ADCD.

(1)若BC=3,AB=5,求AC的值;

(2)若AC是DAB的平分線,求證:直線CD是O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在6×6的方格紙中,每個(gè)小方格都是邊長為1的正方形,其中A、B、C為格點(diǎn),作△ABC的外接圓⊙O,則弧AC的長等于(  )

A. π B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,ADBC邊上的高線,CEAB邊上的中線,DGCEG,且CD=AE.

1)求證:CG=EG.

2)求證:∠B=2ECB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場需求,新生活超市在端午節(jié)前夕購進(jìn)價(jià)格為3/個(gè)的某品牌粽子,根據(jù)市場預(yù)測,該品牌粽子每個(gè)售價(jià)4元時(shí),每天能出售500個(gè),并且售價(jià)每上漲0.1元,其銷售量將減少10個(gè),為了維護(hù)消費(fèi)者利益,物價(jià)部門規(guī)定,該品牌粽子售價(jià)不能超過進(jìn)價(jià)的200%,請你利用所學(xué)知識幫助超市給該品牌粽子定價(jià),使超市每天的銷售利潤為800元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】樂樂根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=|x-1|的圖象與性質(zhì)進(jìn)行了研究,下面是樂樂的研究過程,請補(bǔ)充完成:

(1)函數(shù)y=|x-1|的自變量x的取值范圍是 .

(2)列表,找出yx的幾組對應(yīng)值.

x

-1

0

1

2

3

y

b

1

0

1

2

(3)在平面直角坐標(biāo)系xOy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),并畫出該函數(shù)的圖象.

(4)①函數(shù)的最小值為 ;

②寫出一條該函數(shù)的其它性質(zhì): .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C,E,F,B在一條直線上,點(diǎn)A,DBC異側(cè),ABCD,AE=DF,∠A=D

1)求證:AB=CD

2)若AB=CF,∠B=50°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,D為斜邊AB的中點(diǎn),∠B=60°,BC=2cm,動點(diǎn)E從點(diǎn)A出發(fā)沿AB向點(diǎn)B運(yùn)動,動點(diǎn)F從點(diǎn)D出發(fā),沿折線D﹣C﹣B運(yùn)動,兩點(diǎn)的速度均為1cm/s,到達(dá)終點(diǎn)均停止運(yùn)動,設(shè)AE的長為x,△AEF的面積為y,則yx的圖象大致為(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)PAD延長線上一點(diǎn),連接AC、CP,F(xiàn)AB邊上一點(diǎn),滿足CFCP,過點(diǎn)BBMCF,分別交AC、CF于點(diǎn)M、N

(1)若AC=AP,AC=4,求ACP的面積;

(2)若BC=MC,證明:CP﹣BM=2FN.

查看答案和解析>>

同步練習(xí)冊答案