【題目】如圖,將矩形紙片ABCD沿EF折疊,使點B與CD的中點重合,若AB=2,BC=3,則△FCB′與△B′DG的面積之比為(

A.9:4
B.3:2
C.4:3
D.16:9

【答案】D
【解析】解:設(shè)BF=x,則CF=3﹣x,B'F=x,
又點B′為CD的中點,
∴B′C=1,
在Rt△B′CF中,B'F2=B′C2+CF2 , 即x2=1+(3﹣x)2
解得:x= ,即可得CF=3﹣ =
∵∠DB′G+∠DGB'=90°,∠DB′G+∠CB′F=90°,
∴∠DGB′=∠CB′F,
∴Rt△DB′G∽Rt△CFB′,
根據(jù)面積比等于相似比的平方可得: = = =
故選D.

設(shè)BF=x,則CF=3﹣x,B'F=x,在Rt△B′CF中,利用勾股定理求出x的值,繼而判斷△DB′G∽△CFB′,根據(jù)面積比等于相似比的平方即可得出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC是等邊三角形,BDAC,EBC延長線上的一點,且∠CED=30°.

(1)求證:DB=DE.

(2)在圖中過DDFBEBEF,若CF=3,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的頂點在原點O,經(jīng)過點A(1, );點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.

(1)求二次函數(shù)的解析式;
(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;
(3)當(dāng)△FPM是等邊三角形時,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD中,E為對角線BD上一點,過E點作EFBDBCF,連接DF,GDF中點,連接EG,CG.

(1)求證:EG=CG;

(2)將圖①中BEFB點逆時針旋轉(zhuǎn)45°,如圖②所示,取DF中點G,連接EG,CG.

問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)﹣22× +|1﹣ |+6sin45°+1
(2)3tan30°﹣2tan45°+2sin60°+4cos60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB//CD,B=ADC,點EBC邊上的一點,且AE=DC

1)求證:ABC≌△EAD ;

2)如果ABAC,求證:∠BAE= 2ACB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,點D是線段AC上的一動點,EBC的延長線上,且BDDE

(1)如圖,若點D為線段AC的中點,求證:ADCE;

(2)如圖,若點D為線段AC上任意一點,求證:ADCE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c與x軸的公共點是(﹣4,0),(2,0),則這條拋物線的對稱軸是直線

查看答案和解析>>

同步練習(xí)冊答案