【題目】如圖,在ABC中,AB=AC,若將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到FEC

(1)猜想AE與BF有何關(guān)系,說明理由.

(2)若ABC的面積為3cm2,求四邊形ABFE的面積.

(3)當(dāng)ACB為多少度時(shí),四邊形ABFE為矩形?

【答案】(1)AEBF,AE=BF(平行四邊形的對邊平行且相等);

(2)S四邊形ABFE=12cm2;

(3)當(dāng)ACB=60°時(shí),四邊形ABFE為矩形.

析】

試題分析:(1)由ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°可知:AC=CF,BC=CE,四邊形ABFE為平行四邊形,于是得到結(jié)論;

(2)由于AC是ABE的BE邊上中線,于是得到S△ABE=2S△ABC=6,同理S△BEF=2S△CEF=6,即可得到結(jié)論;

(3)要判斷四邊形ABFE為矩形,從對角線來看,要求AF=BE,又AF與BE互相平分,只需要AC=BC,而AB=AC,故ABC為等邊三角形,ACB=60°.

試題解析:(1)AEBF,AE=BF.

理由是:∵△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到FEC,

∴△ABC≌△FEC,

AB=FE(全等三角形的對應(yīng)邊相等),

ABC=FEC(全等三角形的對應(yīng)角相等),

ABFE(內(nèi)錯(cuò)角相等,兩直線平行),

四邊形ABFE為平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

AEBF,AE=BF(平行四邊形的對邊平行且相等);

(2)由(1)得四邊形ABFE為平行四邊形,

AC=CF,BC=CE,

根據(jù)等底同高得到S△ABC=S△ACE=S△BCF=S△CEF=3,

S四邊形ABFE=4S△ABC=12cm2

(3)當(dāng)ACB=60°時(shí),四邊形ABFE為矩形.

理由是:AB=AC,ACB=60°,

∴△ABC是等邊三角形,

BC=AC,BAC=60°,

∴∠ACE=120°.

又BC=CE,AC=CF,

∴∠EAC=CEA=30°,

∴∠BAE=90°,同理可證其余三個(gè)角也為直角.

四邊形ABFE為矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y的方程組的解滿足x<0,y>0.

(1)x=________, y=________(用含a的代數(shù)式表示);

(2)求a的取值范圍;

(3)若2x8y=2m,用含有a的代數(shù)式表示m,并求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果多邊形的每個(gè)內(nèi)角都比它相鄰的外角的4倍多30°,求這個(gè)多邊形的內(nèi)角和及對角線的總條數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面的內(nèi)容,再解決問題.

例題:若, 求m和n的值

解:∵

,

問題:(1)若,求的值.

(2)已知a,b,c是△ABC的三邊長,滿足,且c是△ABC中最長的邊,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角三角形ABC內(nèi)接于⊙OADBC,垂足為D

1)如圖1, BDDC求∠B的度數(shù);

2)如圖2,BEAC,垂足為E,BEAD于點(diǎn)F,過點(diǎn)BBGAD交⊙O于點(diǎn)G,AB邊上取一點(diǎn)H使得AHBG.求證AFH是等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2A3在射線ON上,點(diǎn)B1,B2,B3,在射線OM上,△A1B1A2△A2B2A3,△A3B3A4,均為等邊三角形,若OA1=2,則△A5B5A6的邊長為( )

A. 8 B. 16 C. 24 D. 32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是交警在一個(gè)路口統(tǒng)計(jì)的某個(gè)時(shí)段來往車輛的車速(單位:km/h).

(1)計(jì)算這些車的平均速度.

(2)車速的眾數(shù)是多少?

(3)車速的中位數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程 有兩個(gè)不相等的實(shí)數(shù)根.

(1)k的取值范圍。

(2)是否存在實(shí)數(shù)k,使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級(jí)學(xué)生的體能情況,隨機(jī)抽取部分男生進(jìn)行引體向上測試,并根據(jù)抽測成績繪制成如下兩幅統(tǒng)計(jì)圖.

)本次抽測的學(xué)生總?cè)藬?shù)為__________;請你補(bǔ)全圖的統(tǒng)計(jì)圖.

)本次抽測成績的眾數(shù)為__________次;中位數(shù)為__________次.

)若規(guī)定引體向上次以上(含次)為體能達(dá)到優(yōu)秀,則該校名九年級(jí)男生中,估計(jì)有多少人能達(dá)到優(yōu)秀?

查看答案和解析>>

同步練習(xí)冊答案