18.已知O為直線AB上一點,射線OD,OC,OE位于直線AB上方,OD在OE的左側(cè),∠AOC=120°,∠DOE=80°.
(1)如圖,當(dāng)OD平分∠AOC時,求∠EOB的度數(shù);
(2)點F在射線OB上,
①若射線OF繞點O逆時針旋轉(zhuǎn)n°(0<n<180且n≠60),∠FOA=3∠AOD,請判斷∠FOE和∠EOC的數(shù)量關(guān)系并說明理由;
②若射線OF繞點O順時針旋轉(zhuǎn)n°(0<n<180),∠FOA=2∠AOD,OH平分∠EOC,當(dāng)∠FOH=∠AOC時,則n=68°或164°.

分析 (1)利用角平分線和圖形尋找出角之間的關(guān)系即可得出結(jié)論;
(2)分兩種情況,畫出圖形,找出角之間的關(guān)系即可求出結(jié)論;
(3)分三種情況同(2)的方法即可得出結(jié)論.

解答 解:(1)∵OD平分∠AOC,
∴∠COD=$\frac{1}{2}$∠AOC=60°,
∵∠DOE=80°.
∴∠COE=∠DOE-∠COD=20°,
∴∠AOE=∠AOC+∠COE=120°+20°=140°
∴∠BOE=180°-∠AOE=40°,
(2)①當(dāng)OE在OC的右側(cè),即:0°<n<60°
如圖,

∵∠AOC=120°,
∴∠COD=∠AOC-∠AOD=120°-∠AOD,
∵∠DOE=80°,
∴∠COE=∠DOE-∠COD=80°-(120°-∠AOD)=∠AOD-40°,
∵∠FOA=3∠AOD,
∴∠EOF=∠AOF-∠AOE=3∠AOD-(∠AOC+∠COE)
=3∠AOD-(120°+∠AOD-40°)=3∠AOD-80°-∠AOD=2∠AOD-80°=2(∠AOD-40°)=2∠COE;
當(dāng)OE在OC左側(cè)時,即:60°<n<180°,
如圖2,

∵∠AOC=120°,
∴∠COD=∠AOC-∠AOD=120°-∠AOD,
∵∠DOE=80°,
∴∠COE=∠COD-∠DOE=120°-∠AOB-80°=40°-∠AOD;
∵∠FOA=3∠AOD,
∴∠EOF=∠AOC-∠AOF-∠COE=120°-3∠AOD-(40°-∠AOD)
=80°-2∠AOD=2(40°-∠AOD)=2∠COE,
即:∠EOF=2∠COE.
(3)當(dāng)OE在OC的右側(cè),如圖3,

設(shè)∠COH=∠HOE=α,
∴∠COD=∠DOE-∠COE=80°-2α,
∵∠AOC=120°,
∴∠AOD=∠AOC-∠COD=120°-(80°-2α)=40°+2α,
∵∠FOA=2∠AOD=2(40°+2α)=80°+4α,
∵∠BOF=180°-∠FOA=180°-∠FOA=180°-(80°+4α)=100°-4α,
∴∠BOE=180°-∠AOC-∠COE=60°-2α,
∴∠FOH=∠HOE+∠BOE+∠BOF
=α+(60°-2α)+(100°-4α)
=160°-5α,
∵∠FOH=∠AOC=120°,
∴160°-5α=120°,
∴α=8°,
∴n=∠BOF=100°-4α=68°,
當(dāng)OE與OC重合(OH,OE,OC為同一條射線),
如圖4,

此時:∠FOH=160°≠∠AOC,舍去;
當(dāng)OE在OC的左側(cè)時,如圖6,

設(shè)∠COH=∠HOE=α,
∴∠COD=∠DOE+∠COE=80°+2α,
∵∠AOC=120°,
∴∠AOD=∠AOC-∠COD=40°-2α,
∵∠FOA=2∠AOD=2(40°-2α)=80°-4α,
∴∠FOH=∠AOC-∠COH+∠AOF=200°-5α,
∵∠FOH=∠AOC,
∴200°-5α=120°,
∴α=16°,
∵∠BOF=180°-∠FOA=180°-(80°-4α)=100°+4α,
∴n=∠BOF=100°+4α=164°.
∴n=68°或n=164°.

點評 此題是角的計算,主要考查了角平分線,綜合性較強,考查了學(xué)生分析問題的能力,是否能根據(jù)題意,嚴(yán)謹(jǐn)?shù)禺嫵鰣D形是解決此類問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.課間,頑皮的小剛拿著老師的等腰直角三角板放在黑板上畫好了的平面直角坐標(biāo)系內(nèi)(如圖),已知直角頂點H的坐標(biāo)為(0,1),另一個頂點G的坐標(biāo)為(4,4),則點K的坐標(biāo)為(3,-3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知∠COB=2∠AOC,OD平分∠AOB,∠AOC=20°,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,BD、CE分別是△ABC的邊AC和邊AB上的高,如果BD=CE.試證明AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.已知a,b.c為三角形ABC的三邊,且滿足a2+2b2+c2-2b(a+c)=0,試判斷三角形ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,直角坐標(biāo)系中,點A(0,a),點B(b,0),若a、b滿足(a-b-8)2+|2a+b-4|=0,C是B點關(guān)于y軸的對稱點.
(1)求出C點的坐標(biāo);
(2)如圖1,動E點從B點出發(fā),沿BA方向向A點勻速運動,同時,動點F以相同的速度,從C點出發(fā),在AC延長線上沿AC方向運動,EF與BC交點為M,當(dāng)E運動到A時,兩點同時停止運動,在此過程中,EM與FM的大小關(guān)系是否不變?請說明理由;
(3)如圖2,在(2)的條件下,過M作MN⊥EF交y軸于點N,N點的位置是否改變?若不改變,請求出N點的坐標(biāo),若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系中,A(a,0),B(0,b),且a,b滿足$\sqrt{-(a+2)^{2}}$-(b-6)2=0.
(1)求OA、0B的長度;
(2)若P從點B出發(fā)沿著射線BO方向運動(點P不與原點重合),速度為每秒2個單位長度,連接AP,設(shè)點P的運動時間為t,△AOP的面積為S.請你用含t的式子表示S.
(3)在(2)的條件下,點Q從A點沿x軸正方向運動,點Q與點P同時運動,Q點速度為每秒1個單位長度;當(dāng)S=4時,求△APQ與以A、B、P、Q為頂點的四邊形的面積之比的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.綜合與探究
如圖,在平面直角坐標(biāo)系xOy中,拋物線W的函數(shù)表達(dá)式為y=-x2+2x+3,拋物線W與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸交于點C,它的頂點為D,直線l經(jīng)過A、C兩點.
(1)求點A、B、C、D的坐標(biāo).
(2)將直線l向下平移m個單位,對應(yīng)的直線為l′.
       ①若直線l′與x軸的正半軸交于點E,與y軸的正半軸交于點F,△AEF的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
      ②求m的值為多少時,S的值最大?最大值為多少?
(3)若將拋物線W也向下平移m單位,再向右平移1個單位,使平移后得到的二次函數(shù)圖象的頂點P落在△AOC的內(nèi)部(不包括△AOC的邊界),請直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.一列單項式-x2,3x3,-5x4,7x5.…,按此規(guī)律排列,則第9個單項式是-17x10

查看答案和解析>>

同步練習(xí)冊答案