【題目】如圖,已知 AD 為△ABC 的高線,AD=BC,以 AB 為底邊作等腰 Rt△ABE,連接 ED, EC,延長(zhǎng)CE 交AD 于F 點(diǎn),下列結(jié)論:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正確的有( )
A. ①③B. ①②④C. ①②③④D. ②③④
【答案】C
【解析】
①易證∠CBE=∠DAE,即可求證:△ADE≌△BCE;②根據(jù)①結(jié)論可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解題;③證明△AEF≌△BED即可;④易證△FDC是等腰直角三角形,則CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.
∵AD為△ABC的高線,
∴∠CBE+∠ABE+∠BAD=90°,
∵Rt△ABE是等腰直角三角形,
∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,
∴∠CBE+∠BAD=45°,
∴∠DAE=∠CBE,
在△DAE和△CBE中,
∴△ADE≌△BCE(SAS);
故①正確;
②∵△ADE≌△BCE,
∴∠EDA=∠ECB,
∵∠ADE+∠EDC=90°,
∴∠EDC+∠ECB=90°,
∴∠DEC=90°,
∴CE⊥DE;
故②正確;
③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,
∴∠BDE=∠AFE,
∵∠BED+∠BEF=∠AEF+∠BEF=90°,
∴∠BED=∠AEF,
在△AEF和△BED中,
∴△AEF≌△BED(AAS),
∴BD=AF;
故③正確;
④∵AD=BC,BD=AF,
∴CD=DF,
∵AD⊥BC,
∴△FDC是等腰直角三角形,
∵DE⊥CE,
∴EF=CE,
∴S△AEF=S△ACE,
∵△AEF≌△BED,
∴S△AEF=S△BED,
∴S△BDE=S△ACE.
故④正確;
綜上①②③④都正確,故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)四位數(shù),記千位上和百位上的數(shù)字之和為x,十位上和個(gè)位上的數(shù)字之和為y,如果x=y,那么稱這個(gè)四位數(shù)為“和平數(shù)”.
例如:2635,x=2+6,y=3+5,因?yàn)?/span>x=y,所以2635是“和平數(shù)”.
(1)請(qǐng)判斷:3562 (填“是”或“不是”)“和平數(shù)”.
(2)直接寫出:最小的“和平數(shù)”是 ,最大的“和平數(shù)”是 ;
(3)如果一個(gè)“和平數(shù)”的個(gè)位上的數(shù)字是千位上的數(shù)字的兩倍,且百位上的數(shù)字與十位上的數(shù)字之和是14,求滿足條件的所有“和平數(shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,連接BD.
(1)尺規(guī)作圖:過點(diǎn)D作AB的垂線,垂足為F.(保留作圖痕跡,不寫作法)
(2)求證:點(diǎn)D到BA,BC的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購物券,可以重新在本商場(chǎng)消費(fèi),某顧客剛好消費(fèi)200元.
(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;
(2)請(qǐng)你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天,老師在黑板上布置了這樣一道題目:如果2ya-b-3y2a+b+8=0是關(guān)于y的一元二次方程,你能試著求出a,b的值嗎?
下面是小明和小敏兩位同學(xué)的解法:
小明:根據(jù)題意得解方程組得小敏:根據(jù)題意得或解方程組得或
你認(rèn)為上述兩位同學(xué)的解法是否正確?為什么?若都不正確,你能給出正確的解答嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,,為邊的中點(diǎn),過點(diǎn)作,,垂足分別為,.
(1)求證:;
(2)若,,求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知、和線段都在數(shù)軸上,點(diǎn)、、、對(duì)應(yīng)的數(shù)字分別為、0、2、11.線段沿?cái)?shù)軸的正方向以每秒1個(gè)單位的速度移動(dòng),設(shè)移動(dòng)時(shí)間為秒.
(1)__________;(用含有的代數(shù)式表示.)
(2)當(dāng)_________秒時(shí),;
(3)若點(diǎn)、與線段同時(shí)移動(dòng),點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度向數(shù)軸的正方向移動(dòng),點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度向數(shù)軸的負(fù)方向移動(dòng).在移動(dòng)過程中,當(dāng)時(shí),的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰中,,,于點(diǎn),點(diǎn)是延長(zhǎng)線一點(diǎn),點(diǎn)是線段上一點(diǎn),.
(1)已知,求的度數(shù);
(2)求證:是等邊三角形;
(3)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)A種產(chǎn)品,它的成本是6元/件,售價(jià)是8元/件,年銷售量為5萬件.為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是x萬元,產(chǎn)品的年銷售量將是原銷售量的y倍,且y與x之間滿足我們學(xué)過的二種函數(shù)(即一次函數(shù)和二次函數(shù))關(guān)系中的一種,它們的關(guān)系如下表:
x(萬元) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y | 1 | 1.275 | 1.5 | 1.675 | 1.8 | … |
(1)求y與x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)
(2)如果把利潤(rùn)看作是銷售總額減去成本費(fèi)用和廣告費(fèi)用,試求出年利潤(rùn)W(萬元)與廣告費(fèi)用x(萬元)的函數(shù)關(guān)系式,并計(jì)算每年投入的廣告費(fèi)是多少萬元時(shí)所獲得的利潤(rùn)最大?
(3)如果公司希望年利潤(rùn)W(萬元)不低于14萬元,請(qǐng)你幫公司確定廣告費(fèi)的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com