【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根.第三邊BC的長為5,
①若△ABC是以BC為斜邊的直角三角形,求k的值.
②若△ABC是等腰三角形,求k的值.
【答案】(1)見解析;(2)①,②k的值為5或4.
【解析】
(1)先計算出△=1,然后根據(jù)判別式的意義即可得到結(jié)論;
(2)①先利用公式法求出方程的解為x1=k,x2=k+1,再利用勾股定理的逆定理AB2+AC2=BC2建立關(guān)于k的方程,解出k的值,然后滿足兩根為正根的k的值為所求;
②分類討論:AB=k,AC=k+1,當(dāng)AB=BC或AC=BC時△ABC為等腰三角形,然后求出k的值.
(1)證明:∵b2-4ac=(2k+1)2﹣4(k2+k)=1>0,
∴方程有兩個不相等的實數(shù)根;
(2)一元二次方程x2﹣(2k+1)x+k2+k=0的解為x=,即x1=k,x2=k+1,
①得;
②∵k<k+1,
∴AB≠AC.
當(dāng)AB=k,AC=k+1,且AB=BC時,△ABC是等腰三角形,則k=5;
當(dāng)AB=k,AC=k+1,且AC=BC時,△ABC是等腰三角形,則k+1=5,解得k=4,
綜合上述,k的值為5或4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BE是△ABC的外接圓O的直徑,CD是△ABC的高.
(1)求證:AC·BC=BE·CD;
(2)已知CD=6、AD=3、BD=8,求⊙O的直徑BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在一個長方形廣場的四角都設(shè)計一塊半徑相同的四分之一圓形的花壇.若廣場的長為m米,寬為n米,圓形的半徑為r米.
(1)列式表示廣場空地的面積.
(2)若廣場的長為300米,寬為200米,圓形的半徑為30米,求廣場空地的面積(計算結(jié)果保留π).
(3)如圖2所示,在(2)的條件下,若在廣場的中間再建一個半徑為R的圓形花壇,使廣場的空地面積不少于廣場總面積的,求R的最大整數(shù)值(π取3.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,當(dāng)∠E=90°且AB與CD的位置關(guān)系保持不變,移動直角頂點E,使∠MCE=∠ECD,當(dāng)直角頂點E點移動時,問∠BAE與∠MCD否存在確定的數(shù)量關(guān)系?并說明理由;
(3)如圖3,P為線段AC上一定點,點Q為直線CD上一動點且AB與CD的位置關(guān)系保持不變,當(dāng)點Q在射線CD上運(yùn)動時(點C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2x+c(a≠0)與x軸、y軸分別交于點A,B,C三點,已知點A(﹣2,0),點C(0,﹣8),點D是拋物線的頂點.
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)如圖1,拋物線的對稱軸與x軸交于點E,第四象限的拋物線上有一點P,將△EBP沿直線EP折疊,使點B的對應(yīng)點B'落在拋物線的對稱軸上,求點P的坐標(biāo);
(3)如圖2,設(shè)BC交拋物線的對稱軸于點F,作直線CD,點M是直線CD上的動點,點N是平面內(nèi)一點,當(dāng)以點B,F,M,N為頂點的四邊形是菱形時,請直接寫出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點A、B分別落在x軸、y軸的正半軸上,頂點C在第一象限,BC與x軸平行.已知BC=2,△ABC的面積為1.
(1)求點C的坐標(biāo).
(2)將△ABC繞點C順時針旋轉(zhuǎn)90°,△ABC旋轉(zhuǎn)到△A1B1C的位置,求經(jīng)過點B1的反比例函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和直線CD相交于點O,OF平分∠COE,過點O作OG⊥OF.
(1)若∠AOE=80°,∠COF=22°,則∠BOD= ;
(2)若∠COE=40°,試說明:OG平分∠DOE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上點A表示的數(shù)為﹣3,點B表示的數(shù)為3,若在數(shù)軸上存在點P,使得AP+BP=m,則稱點P為點A和B的“m級精致點”,例如,原點O表示的數(shù)為0,則AO+BO=3+3=6,則稱點O為點A和點B的“6級精致點”,根據(jù)上述規(guī)定,解答下列問題:
(1)若點C軸在數(shù)軸上表示的數(shù)為﹣5,點C為點A和點B的“m級精致點”,則m= ;
(2)若點D是數(shù)軸上點A和點B的“8級精致點”,求點D表示的數(shù);
(3)如圖,數(shù)軸上點E和點F分別表示的數(shù)是﹣2和4,若點G是點E和點F的“m級精致點”,且滿足GE=3GF,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地要建造一個圓形噴水池,在水池中央垂直于地面安裝一個柱子OA,O恰為水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下.在過OA的任一平面上,建立平面直角坐標(biāo)系(如圖),水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式是,則下列結(jié)論:(1)柱子OA的高度為3m;(2)噴出的水流距柱子1m處達(dá)到最大高度;(3)噴出的水流距水平面的最大高度是4m;(4)水池的半徑至少要3m才能使噴出的水流不至于落在池外.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com