【題目】如圖,在RtABC中,∠ACB90°,點D在邊AC上,將△ABD沿BD(對稱軸)翻折,點A落在點E處,連接AE,CE

1)如圖1,當∠AEC90°時,求證:CDAD;

2)當點E落在BC邊所在直線上,且∠AEC60°時.

①猜想△BAE是什么三角形并證明;

②試求線段CDAD之間的數(shù)量關(guān)系.

【答案】1)見解析;(2)①△BAE是等邊三角形,見解析;②AD2CD,見解析

【解析】

1)先由折疊判斷出∠AED=∠DAE,進而根據(jù)∠AEC90°得出判斷出∠CED+∠AED90°,∠DAE+∠ACE90°,得出∠CED=∠ACE,即可得出結(jié)論;

2)①由折疊的性質(zhì)得出BEBA,再利用∠AEC60°即可得出結(jié)論;

②由折疊得出ADDE,∠BED=∠BAC30°,然后由等邊三角形的性質(zhì)得出∠BAC30°,進而得出DE2CD,即可得出結(jié)論.

解:(1)由折疊知,ADDE

∴∠AED=∠DAE,

∵∠AEC90°,

∴∠CED+∠AED90°,∠DAE+∠ACE90°,

∴∠CED=∠ACE,

CDDE,

ADDE

CDAD;

2)①△BAE是等邊三角形,

理由:由折疊知,BEBA,

∴△ABE是等腰三角形,

∵點E落在BC邊所在直線上,且∠AEC60°,

∴△ABE是等邊三角形;

AD2CD,理由:

由①知,△ABE是等邊三角形,

∴∠BAE60°,

∵∠ACB90°,

∴∠BACBAE30°,

由折疊知,ADDE,∠BED=∠BAC30°,

RtCDE中,∠BED30°,

DE2CD,

AD2CD

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為鈍角三角形,將繞點A按逆時針方向旋轉(zhuǎn)得到,連接,若,則的度數(shù)為  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC平分DAB,ADC=ACB=90°,E為AB的中點,

(1)求證:AC2=ABAD;

(2)求證:CEAD;

(3)若AD=4,AB=6,求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+mx+m﹣2的頂點為A,且經(jīng)過點B(3,﹣3).

(1)求頂點A的坐標

(2)若P是拋物線上且位于直線OB上方的一個動點,求OPB的面積的最大值及比時點P的坐標;

(3)如圖2,將原拋物線沿射線OA方向進行平移得到新的拋物線,新拋物線與射線OA交于C,D兩點,請問:在拋物線平移的過程中,線段CD的長度是否為定值?若是,請求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有以下結(jié)論:

①abc0,

②a﹣b+c0,

③2a=b,

④4a+2b+c0,

若點(﹣2)和(,)在該圖象上,則

其中正確的結(jié)論是 (填入正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們已經(jīng)學習過多項式除以單項式,多項式除以多項式一般可用豎式計算,步驟如下:

①把被除式、除式按某個字母作降冪排列,并把所缺的項用零補齊;

②用被除式的第一項除以除式第一項,得到商式的第一項;

③用商式的第一項去乘除式,把積寫在被除式下面(同類項對齊),消去相等項;

④把減得的差當作新的被除式,再按照上面的方法繼續(xù)演算,直到余式為零或余式的次數(shù)低于除式的次數(shù)時為止,被除式=除式×商式+余式.若余式為零,說明這個多項式能被另一個多項式整除.

例如:計算(6x47x3x21)÷(2x+1),可用豎式除法如圖:

所以6x47x3x21除以2x+1,商式為3x35x2+2x1,余式為0

根據(jù)閱讀材料,請回答下列問題(直接填空):

1)(2x3+x3)÷(x1)=   ;

2)(4x24xy+y2+6x3y10)÷(2xy+5)=   

3)[(x2)(x3)+1]÷(x1)的余式為   ;

4x3+ax2+bx15能被x22x+3整除,則a   ,b   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+3在坐標系中的位置如圖所示,它與x,y軸的交點分別為A,B,P是其對稱軸x=1上的動點,根據(jù)圖中提供的信息,給出以下結(jié)論:①2a+b=0,x=3ax2+bx+3=0的一個根,③△PAB周長的最小值是+3.其中正確的是( 。

A. ①②③ B. 僅有①② C. 僅有①③ D. 僅有②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,P、Q兩點分別是邊ABAC的垂直平分線與BC的交點,連結(jié)APAQ,且BPPQQC.求∠C的度數(shù).

證明:∵PQ兩點分別是邊ABAC的垂直平分線與BC的交點,

PA   QCQA   

BPPQQC,

∴在△APQ中,PQ   (等量代換)

∴△APQ   三角形.

∴∠AQP60°,

∵在△AQC中,QCQA,

∴∠C=∠   

又∵∠AQP是△AQC的外角,

∴∠AQP=∠   +   60°.(三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和)

∴∠C   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

同步練習冊答案