【題目】已知△ABC是等邊三角形,點(diǎn)D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊△ADE.
(1)如圖①,點(diǎn)D在線段BC上移動(dòng)時(shí),直接寫(xiě)出∠BAD和∠CAE的大小關(guān)系;
(2)如圖②,點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),猜想∠DCE的大小是否發(fā)生變化.若不變請(qǐng)求出其大;若變化,請(qǐng)說(shuō)明理由.
【答案】(1)∠BAD=∠CAE;(2)∠DCE=60°,不發(fā)生變化,理由見(jiàn)解析.
【解析】
(1)由等邊三角形的性質(zhì)得出∠BAC=∠DAE,(2)由△ABC和△ADE是等邊三角形可以得出AB=BC=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠ACD=120°,再證明△ABD≌△ACE,得出∠ABD=∠ACE=120°,即可得出結(jié)論;
(1)∠BAD=∠CAE
(2)∠DCE=60°,不發(fā)生變化 .理由如下:
∵△ABC是等邊三角形,△ADE是等邊三角形,
∴∠DAE=∠BAC=∠ABC=∠ACB=60°,AB=AC,AD=AE,
∴∠ACD=120°,∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE
易證△ABD≌△ACE(SAS),
∴∠ACE=∠B=60°,
∴∠DCE=∠ACD-∠ACE=120°-60°=60°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖信息,L1為走私船,L2為我公安快艇,航行時(shí)路程與時(shí)間的函數(shù)圖象,問(wèn)
(1)在剛出發(fā)時(shí)我公安快艇距走私船多少海里?
(2)計(jì)算走私船與公安快艇的速度分別是多少?
(3)寫(xiě)出L1,L2的解析式
(4)問(wèn)6分鐘時(shí)兩艇相距幾海里.
(5)猜想,公安快艇能否追上走私船,若能追上,那么在幾分鐘追上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為6,E為BC上的一點(diǎn),BE=2,F(xiàn)為AB上的一點(diǎn),AF=3,P為AC上一點(diǎn),則PF+PE的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】附加題:
觀察下列等式: , , ,
將以上三個(gè)等式兩邊分別相加得:
.
(1)直接寫(xiě)出下列各式的計(jì)算結(jié)果:
=
(2)猜想并寫(xiě)出: = ( ﹣ ).
(3)探究并解方程: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)將一張長(zhǎng)方形紙條ABCD按如圖所示折疊,若折疊角∠FEC=64°.
(1)求∠1的度數(shù);
(2)求證:△EFG是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李和小陸從A地出發(fā),騎自行車沿同一條路行駛到B地,他們離出發(fā)地的距離S(單位:km)和行駛時(shí)間t(單位:h)之間的函數(shù)關(guān)系的圖象如圖所示,根據(jù)圖中的信息,有下列說(shuō)法:
(1)他們都行駛了20 km;
(2)小陸全程共用了1.5h;
(3)小李和小陸相遇后,小李的速度小于小陸的速度
(4)小李在途中停留了0.5h。
其中正確的有
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中畫(huà)出直線y=x+1的圖象,并根據(jù)圖象回答下列問(wèn)題:
(1)寫(xiě)出直線與x軸、y軸的交點(diǎn)坐標(biāo);
(2)求出直線與坐標(biāo)軸圍成的三角形的面積;
(3)若直線y=kx+b與直線y=x+1關(guān)于y軸對(duì)稱,求k,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F(xiàn)是OE上的一點(diǎn),使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說(shuō)明理由;
(3)若BC=AD=8,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把△ABC沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),∠A與∠1+∠2之間有一種數(shù)量關(guān)系始終保持不變,請(qǐng)?jiān)囍乙徽疫@個(gè)規(guī)律,你發(fā)現(xiàn)的規(guī)律是什么?試說(shuō)明你找出的規(guī)律的正確性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com